Experimental detection of the CNO cycle Nicola Rossi

Laboratori Nazionali del Gran Sasso (INFN)

Istituto Nazionale di Fisica Nucleare Laboratori Nazionali del Gran Sasso

pp vs CNO Competition

Solar neutrinos: astro & particle physics

metallicity problem

The BOREXINO detector

Laboratori Nazionali del Gran Sasso – INFN (Hall C)

Rock: 3.800 m w.e. – muon flux ~ 1 m⁻²h⁻¹

The Borexino detector

Sphere of diameter 13.7 m (~1300 m³)

Target (Inner vessel): ~300 ton of liquid scintillator

Nylon balloon 125 µm

2212 PMTs (nominal)

~35% optical coverage

Water Cherenkov Veto $(d = 18 m) 2000 m^3 (208 PMT)$

Borexino's pictures

Under construction, before the filling

Borexino today

From monitoring camera

Software reconstruction of the inner vessel

Hall C

The water extraction campaign

Six cycles of water extraction from mid-2010 to mid-2011

[1 cpd/100t ~ 0.1 nBq/kg]

	Before [cpd/100t]	After [cpd/100t]		
²¹⁰ Bi	~40	~10		
⁸⁵ Kr	~30	~5		
²¹⁰ Po	>2000	<30 (decay)		
²³⁸ U, ²³² Th < 10 ⁻¹⁹ g/g ³⁹ Аг, ⁴⁰ К << 1 срd/100t Expected CNO ~ 5 срd/100t				

The three phases of Borexino

Results from Borexino (2018)

Neutrinos	References	Rate [cpd/100t]	Flux [cm ⁻² s ⁻¹]
рр	Nature 2014, Nature 2018, PRD 2019	(134±10) ₋₁₀ +6	(6.1±0.5) _{-0.5} ^{+0.3} x10 ¹⁰
⁷ Be	PLB 2008, PRL 2011, Nature 2018, PRD 2019	(48.3±1.1) _{-0.7} +0.4	(4.99±0.11) _{-0.08} +0.06x10 ⁹
рер	PRL 2012, Nature 2018 PRD 2019	(2.7±0.4) _{-0.2} +0.1	(1.3±0.3) _{-0.1} +0.1x10 ⁸
⁸ B	PRD 2010, Nature 2018, PRD 2020	0.223 _{-0.022} +0.021	5.68 _{-0.41-0.03} +0.39+0.03x10 ⁶
hep	Nature 2018, PRD 2020	<0.002 (90% CL)	<1.8x10⁵ (90% CL)
CNO	PRL 2010, Nature 2018 (upper limit)	<8.1 (95% CL)	<7.9x10 ⁸ (95%CL)

Implications of Borexino results

The Borexino energy spectrum

Understanding the spectrum

CNO <> pep <> ²¹⁰Bi correlation Core of the problem: *counting analysis* in the RoI

Strategy: 1. independent constraint of pep 2. independent constraint and ²¹⁰Bi

More about independent ²¹⁰Bi constraint

Thermal insulation program

Idea:

Strong and stable temperature **vertical gradient** prevents convective motions

Milestones:

2014: installation of temperature probes
Mid-2015: beginning of the insulation program
Late 2015: turning off of the water recirculation system in the water tank
2016: first operation of the active temperature control system (ATCS)
Early 2019: change of the ATCS set point
Late 2019: installation and commissioning of the Hall C ACTS

Warm air from room ventilation (~20°C)

BOREXINO Water Tank

Heat sink 6°C (Hall C floor)

Thermal Insulation

Before the thermal insulation (Mid-2015)

After the thermal insulation (Beginning of 2016)

Effects on the temperatures

Probes closer to the inner detectors with thermal program milestones

Effects on ²¹⁰Po

The low polonium field

3D View

Minimum at z ~ 80 cm

Compatible with numerical fluid dynamics simulations

²¹⁰Po activity R(minimum) = R(²¹⁰Bi) + R(Vessel)

 $R(Vessel) > 0 \rightarrow Upper limit \rightarrow lower limit for CNO (anti$ correlation)

Bi < (11.5 ± 1.0) cpd/100t (stat + sys)

Systematic uncertainty (uniformity): 0.8 cpd/100

Final constraint: ²¹⁰Bi < (11.5 ± 1.3) cpd/100t

CNO neutrino analysis

Main ingredients in the spectral analysis:

A) pep 1.4% Simmetric penalty

B) ²¹⁰**Bi 11%** Asymmetric penalty

1. Multivariate Montecarlo Fit

2. Counting Analysis (Rol) Analytical modelling (consistency check)

Final result

Systematics: Response, resolution, spectral shapes and LY: $\sigma_L = -0.5$, $\sigma_R = +0.6$ (5.1 σ significance) **Hypothesis CNO=0 excluded at 5.0 \sigma (99%CL) Model compatibility:** 0.5 σ (HZ), 1.3 σ (LZ)

Result (68% CL stat + sys) = $7.2_{-1.7}^{+3.0}$ cpd/100t

LZ disfavored at 2.1 σ including other fluxes from pp-chain (Borexino only)

Updating the table with CNO

Neutrinos	References	Rate [cpd/100t]	Flux [cm ⁻² s ⁻¹]
рр	Nature 2014, Nature 2018, PRD 2019	(134±10) ₋₁₀ +6	(6.1±0.5) _{-0.5} +0.3x10 ¹⁰
⁷ Be	PLB 2008, PRL 2011, Nature 2018, PRD 2019	(48.3±1.1) _{0.7} +0.4	(4.99±0.11) _{-0.08} +0.06x10 ⁹
рер	PRL 2012, Nature 2018 PRD 2019	(2.65±0.36) _{-0.24} +0.15	(1.27±0.19) _{-0.12} +0.08x10 ⁸
⁸ B	PRD 2010, Nature 2018, PRD 2020	0.223 _{-0.022} +0.021	5.68 _{-0.41-0.03} +0.39+0.03x10 ⁶
hep	Nature 2018, PRD 2020	<0.002 (90% CL)	<1.8x10 ⁵ (90% CL)
CNO	Nature 2020 (THIS WORK)	7.2 _{-1.7} +3.0	7.0 _{-2.0} +3.0x10 ⁸

Thank you very much!

G. & V. Cocconi Prize 2021 physicsworld TOP10 BREAKTHROUGH 2020

