Insights into the Galactic Center environment from VHE gamma-ray observations with ground-based facilities

Christian Fruck1,(2)
*cfrruc@ph.tum.de

1Technische Universität München, 2Max-Planck-Institut für Physik
- **disk (30 kpc x 0.3 kpc):** young stars, gas, molecular clouds, dust
- **bar (4.5 kpc) and bulge (1.5 kpc):** old stars low star formation
- **Central Molecular Zone (CMZ, 250 pc):** dense molecular clouds high star formation rate

image source: https://apod.nasa.gov
- few 10 OB stars confined inside the central arc-sec around SgrA*
- star S2 periastron: 120 AU, period: 15.6 y

IR image with S-stars/orbits highlighted (right)

SgrA* is highly variable in the IR

Gravitational radius:
\[r_s = \frac{2GM}{c^2} = 1.2 \cdot 10^{12} \text{ cm} = 4 \cdot 10^{-7} \text{ pc} = 10 \mu \text{ arc sec} \]

- Expected to be resolved in the mm/sub-mm radio with VLBI (EHT)

Gendel et al. 2003

A. M. Ghez et al. 2000
Short time-scale variability:

- Minute-day-scale variability
- X-ray, IR and Radio
- Changes by orders of magnitude
- From direct vicinity of the BH
- No direct link to specific events (G2 pericenter passage, etc.)

Tuan Do et al 2019 ApJL 882 L27
Intermediate time-scale variability:
- Indirect evidence from X-ray echos
- Probably linked to past very bright flares
- Echo can be seen propagating
- time-sale of years
- Causes not precisely known

Long time-scale variability(?):

- Galaxy-scale structures in X-rays and gamma rays
- Fermi bubbles (2010), ~GeV
- EROSITA bubbles (2020), ~keV
- Could be linked to past activity of SgrA*
- Remnant of possible jet-like structure (timescale of ~My)
- Different explanations possible (Epochs of intense star formation, etc.)

Count maps \((E > 100\, \text{MeV}, E > 1\, \text{GeV}, E > 10\, \text{GeV})\):

- limited resolution
- crowded FoV

\(\Rightarrow\) source association difficult
VHE gamma-ray telescopes - IACTs

VERITAS

MAGIC

H.E.S.S.
The Central Molecular Zone (CMZ):
- Extends ~200 pc in positive and ~100 pc in negative gal. longitude
- Very rich astrophysical environment: high star forming rate, many SNRs, dense gas, dust and super-massive MCs
- Bright throughout the EM spectrum up to VHE gamma-rays
- high risk of source confusion

Radio source SgrA* and the SMBH:
- SgrA* is a point-like radio source that is highly variable in X-ray
- Associated with 4 M☉ SMBH
- Source candidate for gamma-ray emission
- Role as CR-accelerator speculated upon (PeVatron)
- Variable in VHE?
Early IACT observations

First detections:

- CANGAROO II
 (K. Tsuchiya et al. 2004)

- Whipple
 (Kosack et al. 2004)

- HESS J1745-290
 (Aharonian et al. 2004)

- MAGIC
 (Albert et al. 2006)
Detailed studies by H.E.S.S. in 2006-2010:

- Extended VHE emission from “Galactic Ridge” (Aharonian et al. 2006)

- SED of HESS J1745-290 with clear cut-off at ~10 TeV (Aharonian et al. 2009)

- Precise localization of HESS J1745-290 (Acero et al. 2010), excluding SNR SgrA East as source of TeV emission

The G2 object event:

- Gas cloud of $3m_\odot$ detected on its way towards SgrA* (S. Gillessen et al. 2012)
- Pericentre passage 2013-2014, at $\sim2000\ r_g$ (S. Gillessen et al. 2013)
- Possible interaction with the SMBH
- Monitoring campaigns triggered in nearly all wavelengths (radio to gamma-rays)
- Observations by MAGIC from 2012 on
- No variability detected in integral flux above 1 TeV and above 10 TeV

Ahnen et al., A&A 2017
H.E.S.S. Abramowski et al., Nature 2016:

- Spectrum of GC diffuse emission measured up to 40 TeV
- No cut-off below ~100 TeV
- CR density profile shows increasing flux towards SgrA*
- GC SMBH as potential PeVatron?

Consistent with diffusion from point source at location of SgrA*
Extended emission study by MAGIC

New MAGIC analysis:

- MAGIC sky map $E \geq 1$ TeV
- Sky map smeared with PSF-sized kernel
- 2D fit of arbitrary source shapes
- Contours indicate CS emission (Tsuboi+ ‘99)
- Indiv. sources (SgrA*, G0.9, ‘Arc’) + Gal. Ridge

SkyPrism:

- Cutting Gal. Ridge into rings and fit separately

Vovk et al., A&A 2018

A&A 642, A190 (2020)

New MAGIC analysis:

- MAGIC sky map $E \geq 1$ TeV
- Sky map smeared with PSF-sized kernel
- 2D fit of arbitrary source shapes
- Contours indicate CS emission (Tsuboi+ ‘99)
- Indiv. sources (SgrA*, G0.9, ‘Arc’) + Gal. Ridge
Regions and methods:

- H.E.S.S. (Nature 2016) spectrum extracted from ‘pacman’ (open annulus) region
- H.E.S.S. (A&A 2018) used rectangular bins covering ~orange box
- MAGIC spectrum is result of 2D likelihood fit containing also SgrA*, Arc and G0.9

Results:

- The 68% and 95% error bands result from a cross-bin MCMC sampling of the parameter space including energy forward folding
- SEDs are very similar within errors (MAGIC vs. H.E.S.S. A&A 2018)
- MAGIC SED shows 2 σ hint for cut-off at ~20 TeV
VERITAS study of GC region:

- Same circular regions used like HESS (2016)
- No hint for cut-off in VERITAS diffuse emission SED but also not excluded below 100 TeV
- SEDs for G0.9+0.1 and J1746/Arc, largely consistent with H.E.S.S./MAGIC
- No hint for long term variability after 8y

Summary:

- The Galactic Center has been studied extensively in VHE gamma rays during the past ~2 decades using IACTs.
- A central point-like source is spatially coincident with SgrA* that is associated with a ~4 M solar-mass black hole.
- No variability could be detected for any of the VHE sources at the GC.
- Degree-scale extended gamma-ray emission is spatially consistent with massive molecular clouds.
- The energy spectrum reaches several 10s of TeV, without clear indication for a cut-off, hinting at CR acceleration reaching ~PeV energies.
- The morphology of the diffuse source hints at a CR source close to SgrA* and a diffusion scenario (1/r CR flux density).
- Exciting results are to be expected from water Cherenkov arrays like HAWC/LHAASO!

Thanks for your attention!