TAIGA Status and Results

Martin Tluczykont For the TAIGA Collaboration https://taiga-experiment.info

ISCRA, Moscow, June 2021

Tunka observatory site

TAIGA-HiSCORE

TAIGA-IACT

TAIGA-Muon

- Very high energy Astrophysics under extreme conditions
- Proximity to BAIKAL ν Experiment
- Tunka valley, Republic Buryatia

MASTER optical telescope

Air Cherenkov arrays

Particle detectors

Optical Astronomy

(Radio air shower detection)

TAIGA Status & Results

Talga Tunka Advanced Instrument for cosmic ray and Gamma Ray Astronomy

Russia MSU (SINP), Moscow ISU (API), Irkutsk INR RAS, Moscow JINR, Dubna MEPhI, Moscow IZMIRAN, Moscow BINR SB RAS, Novosibirsk NSU, Novosibirsk ASU, Barnaul Germany MPI, Munich University of Hamburg (lexp), Hamburg DESY, Zeuthen

Italy **I** Torino University, Torino

Romania **II** ISS, Bucharest

The hybrid TAIGA Experiment

TAIGA-HiSCORE

Integrating air Cherenkov Timing array 2020: 89 stations 2021: 120 stations

TAIGA-IACT

IACT-1: first results available IACT-2: data taking started IACT-3: in consturction

TAIGA-Muon

240 m² surface and underground particle detectors

Hybrid air Cherenkov approach

Cost efficient instrumentation Of large areas

Monoscopic IACTs: Image shape

HiSCORE timing array: Angular resolution O(0.1°) Core resolution O(10m) Hybrid reconstruction: Combining strengths of techniques

hybrid scaled width
 Image recovery / correction

TAIGA Status & Results

Hbrid reconstruction

TAIGA Status & Results

6

200

100

-100

-200

-300

-400

400

TAIGA Pilot complex Sensitivity

- Hybrid sensitivity estimate
 - 1km² HiSCORE
 - 3 IACTs
- Different FoV
 - HiSCORE ~60° diameter
 - IACTs ~9° diameter
- Key to source identification morphology spectroscopy:
 - Δθ 0.15° @O(TeV)
 - ΔΕ/Ε 15% @O(TeV)

Scientific goals of the TAIGA Pilot complex

- Establish the new hybrid imaging and timing approach for gamma-ray and cosmic ray astrophysics
- TeV-PeV gamma-ray spectroscopy
 - Extend gamma ray spectra into 100 TeV range
 - Search for Galactic Pevatrons
 spectroscopy (15% resolution) of cutoff energy range morphological studies (0.1° angular resolution)
- Monitoring of bright extragalactic sources
- Fundamental physics
 - Heavy dark matter, axion search
 - Lorentz invariance violation

Also see A. Panov, this conference

TAIGA timing stations

- 0.5 m² light collection, FoV ~0.6 sr
- "Tilting" for extension of sky coverage
- **Sub-ns** array-wide time synchronization

HiSCORE results

Cosmic ray energy spectrum

Angular resolution from MC Verified with data (chessboard)

Single station trigger rates Reproduced (Ethr ~ 50TeV)

First point source: CATS Lidar

TAIGA IACTs

Mirror dish:

• ø 4.32 m

- 4.75 m focal length
- 34 glass mirrors, ø 60cm
- Manual facet adjustment

Cameras:

- 560 XP1911 PMTs IACT-1
 595 XP1911 PMTs IACT-2
- 15mm cathode area
- Single pixel aperture 0.36°
- Energy threshold O(TeV)

Second TAIGA IACT

Camera electro

560 PMTs + Winston cones

MAROC-3 board 64 channels Trigger: fast shaper Signal: slow shaper

22 clusters

28 PMTs each

MAROC3 board

Cross-board

HV supply

7 PMT divider board

PMT XP1911
Winston cones

(A)_

TAIGA Status

Pointing correction

- Pointing
- Shaft encoders on IACT axes

CCD camera: calibration using bright stars

Data from 1st TAIGA-IACT

Image: IACT **Direction: HiSCORE**, w _ _ _ ... 40 - 1400 19 16 30 14 - 1200 15 20 13 1000 20 10 Y, cm 9 litude 800 0 12 -10 - 600 10-20 400 -30 - 200 -40 -40 -30 -20 -1010 20 30 40

TAIGA data & MC

2 independent simulation chains

Status & Results

TAIGA-Muon detectors

1x1 m each detector

Wavelength shifters for scintillation light collection Fed onto PMTs

Mean cosmic muon amplitude 31 p.e. +-20%

Clear muon peak observed

Data analysis 1st IACT

- Only 1 IACT, monoscopic, no hybrid analysis yet
- Two independent raw data reconstruction chains (from raw data to image)
- 4 groups with high level analyses
- First attempts at machine learning analyses

Observations of the Crab Nebula by IACT-1

- Culmination ~30°
- Total high quality 40.5 h
- Size > 120p.e. (~4.5TeV)
- Alpha: angle of major image axis to source position

Upcoming: journal publication

Conclusions

• TAIGA Pilot complex, 1 km² – cost-efficient hybrid principle

- 89 HiSCORE stations & 2 IACTs operational
- 120 HiSCORE stations by the end of 2021
- 3rd IACT under construction
- MC & Data in agreement
- First results: Crab Nebula detected
- Hybrid event analysis work in progress
- Improvement at high energy end using muon counters
- Future array: O(10km²)
 - 1000 wide-angle stations
 - 15 IACTs
 - O(10-13) TeV cm-2 sec-1

Backup slides

Event reconstruction

- Station amplitudes (LDF/ADF)
 - \rightarrow core impact
 - \rightarrow shower depth
 - \rightarrow primary energy
- Station timing: (cone fit / time-model)
 - \rightarrow primary direction

TAIGA IACT real data

TAIGA Status & Results

TAIGA Status & Results

Data-MC comparison

Angular resolution from MC Verified with data (chessboard)

 Data used for absolute pointing calibration <0.1° 52.0

Dec. [deg] 21.5

51.0

186.0

ISS track detection

187.0

R.A. [dea]

186.5

187.5

188.0

188.5

g/h separation Hybrid scaled width (HSCW)

TAIGA Status & Results

Sky coverage

Tilted mode: inclined along the north-south axis. coverage of different parts of the sky.

Tilted south mode: 110 h on the Crab Nebula, after weather corrections.

TAIGA array

TAIGA Status & Results

Cosmic ray energy spectrum

TAIUA JIAIUS & INCOURS