The SuperCDMS SNOLAB Experiment
Mining Dark Matter in Northern Canada

16th Marcel Grossman Meeting

Tarek Saab
University of Florida
Outline

• Fundamental Principles of Dark Matter Detection:
 How dark matter interacts

• Dark Matter Detection Techniques:
 The principles behind the SuperCDMS approach
 The road to low mass / energy resolution

• The SuperCDMS Experiment in Action:
 • Current results
 • Future Plans
Detection Principles

How dark matter interacts with material
Dark Matter Interactions & Detector Physics

- Interactions fall into three categories, with differing energy scales
 - **Nuclear recoils** - particle interacts with the nucleus
 - Traditional “WIMP” Dark matter signal
 - Neutron and neutrino backgrounds
 - **Electron recoils** - particle interacts with atomic electrons
 - Electron recoil, Dark Photon and Axion signals
 - Most background sources
 - **Excitation recoils** - particle interacts with background excitations in target material
 - i.e. Phonons, Cooper pairs, …

- Detector response often is different for the three categories. Can be used to reject some backgrounds
- Energy scale of the interaction dictates detection approach
- Backgrounds and detection techniques drive science reach
Dark Matter Interaction

- Heavy DM
 - Nuclear Scattering
 - Recoil energies \gg atomic energies
 - Simple elastic collisions
 - Nucleus mass determines DM mass sensitivity
 - Long exposure time, limited by detector mass

- Mid-weight DM
 - Nuclear Scattering & Electron Scattering
 - Recoil energies \sim atomic energies
 - Inelastic collisions dominated by orbital mechanics
 - Mass reach determined by band gap
 Short exposure time, limited by background

- Light DM
 - Absorption
 - Recoil energies \sim atomic energies
 - Inelastic collisions dominated by orbital mechanics
 - Mass reach determined by band gap
 Short exposure time, limited by background
The SuperCDMS Detectors

What happens when DM interacts with a detector?
SuperCDMS/EDELWEISS Detector Technology

Discriminating iZIP Detector:
- Prompt phonon and ionization signals allow for discrimination between nuclear and electron recoil events.

Low Threshold HV Detector:
- Drifting electrons/holes across a potential (V_b) generates a large number of phonons (Luke phonons).
- Enables very low thresholds!
- Trade-off: No event-by-event NR/ER discrimination.

Mathematically:

$$E_t = E_r + N_{eh} eV_b$$

Where:
- E_t is the total phonon energy.
- E_r is the primary recoil energy.
- N_{eh} is the number of electron-hole pairs.
- e is the electronic charge.
- V_b is the bias voltage.

Sensors measure E_t, and n_{eh}

Sensors measure E_t
SuperCDMS Detectors: Posing for the Cameras

- Detectors made of high-purity Ge and Si Crystals
 - Si (0.6 kg) provides sensitivity to lower dark matter masses, Ge (1.5 kg) provides sensitivity to lower dark matter cross-sections
- Low operation temperature: ~15mK
 - Athermal phonon measurement with TESs
 - Ionization measurement (iZIP) with HEMTs
- Multiple channels per detector to identify event position
- Initial payload will consist of 4 towers
 - 6 detectors each
 - 2 iZIP: 10 Ge / 2 Si
 - 2 HV: 4 Ge / 4 Si
Comparison of Low Threshold vs Discrimination Modes

HV → Low Threshold
- Ultra high resolution indirect charge measurement
- Thresholds 75 eVee and 56 eVee
- No yield or detector face discrimination

iZIPS → Low Background
- High resolution phonon and charge readout
- All surface and ER backgrounds above few keV removed (red dots)

PRL 116, 071301, 2016

APL 103, 164105 (2013)
Inelastic Nuclear Recoils: Migdal and Bremsstrahlung Effect

- Given a dark matter elastic scatter with nucleus:
 - Induces “instantaneous” change in momentum of nucleus wrt orbital electrons
 - Results in a kinematic boost of the electrons.
 - Leads to Bremsstrahlung emission and
 - Ionization and/or excitation of the atom (Migdal effect)

\(m_\chi = 1 \text{ GeV/c}^2 \)
\(\sigma_{SI}^{\chi N} = 10^{-36} \text{ cm}^2 \)
\(E_{\text{th}} = 160 \text{ eVee} \)

Counts (evts/keV/kg/day)

- Migdal effect
- Bremsstrahlung
- NR

- \(n=2 \)
- \(n=3 \)
- \(n=4 \)

Small-, Mini-, Micro-, HVeV Detectors

- SuperCDMS has also developed gram scale R&D detectors
 - Single electron-hole pair resolution devices will have sensitivity to a variety of sub-GeV DM models with gram*day exposures
 - Largest “quantum resolution” detectors available
 - Powerful tool for low-energy rare event searches

- 0.93 g Si crystal (1x1x0.4 cm3) operated at 33-36 mK at a surface test facility.

- Exposure: 0.49 gram-days (16.1 hours)
 - energy resolution: $\sigma_{\text{ph}} \sim 1.4$ eV \hspace{2cm} $\sigma_{\text{ph}} \sim 3$ eV
 - charge resolution: $\sigma_{\text{eh}} \sim 0.1$ e-h$^+$ \hspace{2cm} $\sigma_{\text{eh}} \sim 0.06$ e-h$^+$
 - operation voltage: 140 V \hspace{2cm} $V_{\text{bias}} \sim 50$ V

arXiv: 1710.09335
arXiv: 1804.10697
arXiv: 1903.06517
SuperCDMS Detectors & Dark Matter Mass Scales

- Dark Matter Mass Ranges
 - "Traditional" Nuclear Recoil: Full discrimination, \(\gtrsim 5 \text{ GeV} \)
 - Low Threshold NR: Limited discrimination, \(\gtrsim 1 \text{ GeV} \)
 - CDMSlite: HV, no discrimination, \(\sim 0.3 - 10 \text{ GeV} \)
 - Migdal & Bremsstrahlung: no discrimination, \(\sim 0.01 - 10 \text{ GeV} \)
 - Electron recoil: HV, no discrimination, \(\sim 0.5 \text{ MeV} - 10 \text{ GeV} \)
 - Absorption (Dark Photons, ALPs): HV, no discrimination, \(\sim 1 \text{ eV} - 500 \text{ keV} \) ("peak search")
SNOLAB

- 2 km underground (6000 m water equiv.)
- Cleanroom (class 2000 or better)
- Large lab (~5,000 m²)
- Cosmic radiation: muon rate reduced by ~10^6
- Surface facilities, support staff (>100)
SuperCDMS @ SNOLAB

- Low-radon clean-room

- Collaborating with:
 - Cryogenic Underground TEST facility (CUTE)
 - Rapid-turn around detector testing
 - First data from SuperCDMS SNOLAB towers.
The SuperCDMS SNOLAB Experiment

Electron Recoil Backgrounds:
- External and facility: $O(0.1 \text{ /keV/kg/d})$
- Det. setup: $O(0.1(\text{Ge})-1(\text{Si}) \text{ /keV/kg/d})$
- Total: $O(0.1-1 \text{ /keV/kg/d})$

Solar ν-dominated NR background

Vibration isolation:
- Seismic: spring loaded platform
- Cryo coolers: soft couplings (braids, bellows)
- Copper cans: hanging on Kevlar ropes

Facility:
- 6800 m.w.e. overburden
- 15 mK base temperature
- Initial Payload: ~30 kg total
 4 towers (2 iZIP, 2 HV)
Dark Matter Search Results

... and future reach
Low Mass: Dark Photon Searches

\[R = V_{\text{dir}} \frac{\rho_{\text{DM}}}{m_V} \varepsilon_{\text{eff}}^2 (m_V, \tilde{\sigma}) \sigma_1 (M_V) \]

Kinetic Mixing Angle \(\varepsilon \)

Dark Photon Mass [keV/c^2]
Mid Mass: Electron Recoil Dark Matter Searches

\[
\frac{dR}{d(\ln E_R)} = V_{\text{det}} \frac{\rho_{\text{DM}}}{m_V} \frac{\rho_{\text{Si}}}{2m_{\text{Si}}} \overline{\sigma}_{\text{ER}} \frac{m_e^2}{\mu_{\text{DM}}^2} I_{\text{Crystal}}(E_e; F_{\text{DM}})
\]

Rapidly Growing Catalog of Limits and Projections

- Central repository for cataloging data & references, and plotting dark matter limits
 - Includes limits from several “Dark Matter” channels, i.e. **Nuclear recoil**, **Electron recoil**, **Dark Photon** and **Axion** interactions
 - Downloadable, runs locally*
 - https://supercdms.slac.stanford.edu/dark-matter-limit-plotter
 - Submissions welcome from all experiments
 - https://ufl.qualtrics.com/jfe/form/SV_9KVMNJhVg0cPb

*you can even run it on your iPad if you are so inclined, but I don’t recommend it

but what about adding accelerator limits?

or will that bring the plotter to its knees!!
Conclusion

... the end
Conclusions

• SuperCDMS detectors aiming to reach “neutrino floor” in 1-10 GeV NR mass range

• Technology being adapted in smaller detectors to search for light dark matter, down to
 • $\mathcal{O}(10)$ MeV via inelastic Nuclear recoil channels (Migdal, Bremsstrahlung)
 • $\mathcal{O}(1)$ MeV via Electron recoil channels and
 • $\mathcal{O}(1)$ eV via Dark Photon Absorption channels
 • With sensitivity to Axion dark matter in the same range

• SuperCDMS designed a powerful complex cryogenic system that is being installed at SNOLAB
 • CUTE is operational – deepest dilution fridge in the world
 • Plans for early science reach with CUTE facility
 • SuperCDMS Detector installation – next spring/summer
 • Initial run – late 2022

• SuperCDMS is particularly competitive at low masses, including electronic interactions.

• Stay tuned! Experiments are producing results at a fast pace, more sensitive experiments are soon to come online.
Dark Matter Searches: Executive Summary

First, it was thought neutrinos can't be detected, …

And then they were (1930—1956)

But then many said Gravitational Waves will never be detected, ….

Until they were, in plenty, (1893—2015)

So, now they all ask, … when the h@#% are you going to finally see this dark matter stuff, ….

…. soon, I hope?!

Dark Matter Searches, 90 years and counting!

At least the size of potential DM parameters space isn’t expanding exponentially!