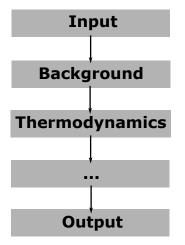
The role of CMB spectral distortions in the Hubble tension

Matteo Lucca Université Libre de Bruxelles (ULB)

Based on Lucca 2020 [2008.01115] (and Lucca et al. 2019 [1910.04619])

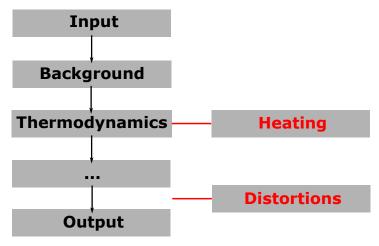
In collaboration with Jens Chluba, Deanna Hooper, Julien Lesgourgues, Nils Schöneberg


> Presentation for the 16th Marcel Grossmann Meeting

The numerical implementation

Matteo Lucca

The structure of CLASS:



See http://class-code.net for more details

1/10

Matteo Lucca

The structure of CLASS in the new version 3.0:

See Lucca et al. '19 for more details (release paper)

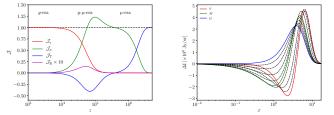
Matteo Lucca

The new heating module:

- Inclusion of straightforward energy injection scenarios such as
 - DM decay or annihilation (Poulin et al. '16 [1610.10051])
 - PBHs evaporation or accretion (Ali-Haïmoud & Kamionkowski '16 [1612.05644], Stöcker et al. '18 [1801.01871], Poulin et al. '20 [2002.10771])

as well as **"non-injected" sources** of SDs such as (Chluba & Sunyaev '12 [1109.6552], Chluba '13 [1304.6121], Chluba '16 [1603.02496])

- Dissipation of acoustic waves
- Adiabatic cooling of electrons and baryons
- Sunyaev-Zeldovich effect


(Only Cosmic Recombination Radiation missing to complete ACDM)

Careful distinction between injected and deposited energy: different schemes for injection efficiency and deposition fractions (Chen & Kamionkowski '03 [astro-ph/0310473], Slatyer '16 [1211.0283], Galli et al. '13 [1306.0563]) The new distortions module:

Based on the Green's function approximation (i.e. assuming that the thermalization problem can be linearized, Chluba '13 [1304.6120])

$$\Delta I(
u, z_0) = \int_{z_0}^{\infty} G_{
m th}(
u, z') rac{\mathrm{d} Q(z')/dz'}{
ho_{\gamma}(z')} \mathrm{d} z' \quad ext{with}$$

 $\mathcal{G}_{\mathrm{th}}\left(\nu,z'\right) = \mathcal{G}(\nu)\mathcal{J}_{g}\left(z'\right) + \mathcal{M}(\nu)\mathcal{J}_{\mu}\left(z'\right) + \mathcal{Y}(\nu)\mathcal{J}_{y}\left(z'\right) + R\left(\nu,z'\right)$

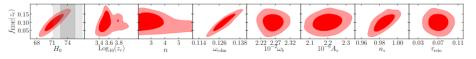
Adapted from Lucca et al. '19

4/10

Complete freedom in the choice of the detector specifics, fundamental to determine branching ratios and residuals exactly

(Chluba & Jeong '13 [1306.5751], Fu et al. '20 [2006.12886])

Matteo Lucca

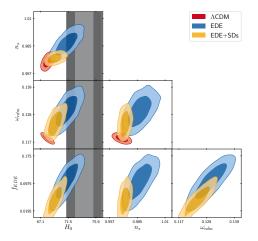

Forecasting cosmological constraints with MontePython:

- Assuming an experiment has measured Δ*I*, which cosmological parameters can we constrain?
 - \rightarrow Use MontePython to create mock likelihoods
 - 1. Create fiducial (Λ CDM) with CLASS \rightarrow observed SD
 - 2. For each step in the MCMC, update the cosmological parameters of given model using CLASS \rightarrow predicted SD
 - 3. Compare *prediction* and *observation* for each step \rightarrow confidence levels for each parameter
- State-of-the-art implementation of galactic and extra-galactic foregrounds (Schöneberg et al. '20 [2010.07814], based on Abitbol et al. '17 [1705.01534])

The Hubble tension and the role of SDs

Matteo Lucca

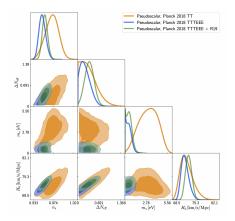
- Growing consensus around the idea that for a solution to the Hubble tension to be successful it needs to modify the expansion history of the universe just before recombination (Knox & Millea '19 [1908.03663])
- The new physics often needs to be compensated for by significant shifts in the standard ACDM parameters
- If one of these parameters is n_s, SDs can place an independent prior on it and thereby test the model's ability to solve the tension (even if the model itself does not directly create any SDs)
- This is precisely the case for Early Dark Energy (see e.g., the introduction of Hill et al. '20 [2003.07355])



Adapted from Smith et al. '19 [1908.06995]

Matteo Lucca

The Hubble tension and the role of SDs $_{\rm OOOOO}$


Proof of principle applied to Early Dark Energy

7/10

Matteo Lucca

Possible other interesting applications: neutrino physics

Adapted from Archidiacono et al. '20 [2006.12885] but see also case of self-interacting neutrinos (Kreisch et al. '19 [1902.00534]) and interacting majoron-neutrinos (Escudero & Witte '19 [1909.04044])

Matteo Lucca

The Hubble tension and the role of SDs $_{\rm OOOOO}$

Possible other interesting applications: modified gravity

$Daselline + n_0$					
Parameter	GR-ACDM	type I RRVM	type I RRVM _{thr.}	type II RRVM	BD-ACDM
H ₀ (km/s/Mpc)	$68.75^{+0.41}_{-0.36}$	68.77 ^{+0.49} -0.48	$68.14\substack{+0.43\\-0.41}$	70.93 ^{+0.93} -0.87	$71.23^{+1.01}_{-1.02}$
ω	0.02240+0.00019	$0.02238^{+0.00021}_{-0.00023}$	$0.02243^{+0.00019}_{-0.00018}$	$0.02269^{+0.00025}_{-0.00024}$	$71.23^{+1.01}_{-1.02}\\0.02267^{+0.00026}_{-0.00023}$
ω _{dm}	$0.11658^{+0.00021}_{-0.00083}$	$0.11661^{+0.00084}_{-0.00085}$	$0.12299^{+0.00197}$	$0.11602^{+0.00162}_{-0.00163}$	$0.11601^{+0.00161}_{-0.00157}$
ν_{eff}	-	$-0.00005\substack{+0.00040\\-0.00038}$	$0.02089^{+0.00553}_{-0.00593}$	$0.00038^{+0.00041}_{-0.00044}$	-
ϵ_{BD}	-	-	-	-	$-0.00130\pm^{+0.00136}_{-0.00140}$
$\varphi_{\rm ini}$	-	-	-	$0.938^{+0.018}_{-0.024}$	$\begin{array}{r} 0.928^{+0.024}_{-0.026} \\ 0.919^{+0.028}_{-0.033} \end{array}$
φ0	-	-	-	$0.930^{+0.022}_{-0.029}$	$0.919^{+0.028}_{-0.033}$
$\tau_{\rm reio}$	$0.050^{+0.008}_{-0.007}$	$0.049^{+0.009}_{-0.008}$	$0.058^{+0.008}_{-0.009}$	0.052 ± 0.008	0.052 ± 0.008
ns	$0.9718^{+0.0035}_{-0.0038}$	0.9714 ± 0.0046	$0.9723^{+0.0040}_{-0.0039}$	$0.9868^{+0.0072}_{-0.0074}$	$0.9859^{+0.0073}_{-0.0072}$
σ_8	0.794 ± 0.007	0.795 ± 0.013	0.770 ± 0.010	$0.794^{+0.013}_{-0.012}$	$0.792^{+0.013}_{-0.012}$
<i>S</i> ₈	$0.788^{+0.010}_{-0.011}$	0.789 ± 0.013	0.789 ± 0.011	$0.761^{+0.018}_{-0.017}$	$\frac{0.792_{-0.012}}{0.758_{-0.018}^{+0.019}}$
r _s (Mpc)	$147.97^{+0.29}_{-0.31}$	$147.94\substack{+0.35\\-0.36}$	$147.88^{+0.33}_{-0.29}$	$143.00^{+1.54}_{-1.96}$	$142.24^{+1.99}_{-2.12}$
$\chi^2_{\rm min}$	2302.14	2301.90	2288.82	2296.38	2295.36
ΔDIC	-	-2.36	+10.88	+5.52	+6.25

Baseline $+ H_0$

Adapted from talk by J. de Cruz Perez at the MG16 meeting (MC3 session) based on Sola et al. '20 [2006.04273]

Matteo Lucca

Summary

Matteo Lucca

Summary of the new public CLASS+MontePython implementation:

- State-of-the-art features such as
 - $1. \ \mbox{many standard}$ and exotic sources of SDs
 - 2. exact solution of the (linearized) thermalization problem
 - 3. total freedom in choice of detector settings
 - 4. galactic and extra-galactic foregrounds
- Ready to be used
 - 1. to explore synergy between CMB anisotropies and SDs
 - 2. for mission specific forecasts

Summary of the role of SDs in the Hubble tension:

- SDs are well-known to be able to set strong bounds on n_s
- If a model significantly affects this parameter in the attempt to solve the H₀ tension SDs would be a very powerful tool to constrain it