

Hubble Speed from First Principles

Alessandra Silvestri

Instituut Lorentz, Leiden U.

16th Marcel Grossmann Meeting

July 5, 2021

Distances in Cosmology

Distances are set by the metric that describes our space-time; in a cosmological context, this implies that their scaling with time is related to the expansion rate of the Universe.

Comoving distance:

$$\chi(z) = \frac{1}{H_0} \int_0^z \frac{d\tilde{z}}{E(\tilde{z})}$$

where I will call <u>cosmological model</u>:

$$E^{2}(z) \equiv \frac{H^{2}(z)}{H_{0}^{2}} = \Omega_{m}(1+z)^{3} + \Omega_{r}(1+z)^{4} + \Omega_{\text{DE}}X(z)$$

X represents all contributions to the expansion that are not matter or radiation, e.g. cosmological constant (X=I), DE, modified gravity, spatial curvature, etc..

Distances in Cosmology

Distances are set by the metric that describes our space-time; in a cosmological context, this implies that their scaling with time is related to the expansion rate of the Universe.

Comoving distance:

$$\chi(z) = \frac{1}{H_0} \int_0^z \frac{d\tilde{z}}{E(\tilde{z})}$$

where I will call <u>cosmological model</u>:

$$E^{2}(z) \equiv \frac{H^{2}(z)}{H_{0}^{2}} = \Omega_{m}(1+z)^{3} + \Omega_{r}(1+z)^{4} + \Omega_{\text{DE}}X(z)$$

X represents all contributions to the expansion that are not matter or radiation, e.g. cosmological constant (X=I), DE, modified gravity, spatial curvature, etc..

Distances in Cosmology

Comoving distance is not a direct observable. There are two types of distances measured in an expanding Universe:

Luminosity distance

standardizable candles/sirens

$$m_B = M_B + 5 \log \left(\frac{d_L}{10 \text{pc}}\right) + 25$$
$$M_B = 5 \log H_0 - 5a_B - 25$$

$$m_B = 5 \log \left(\frac{H_0 d_L}{10 \text{pc}}\right) - 5 a_B$$

Angular diameter distance

BAO standard rulers (CMB peaks)

 θ_s

$$\theta_s(z) = \frac{r_s}{d_A(z)}$$
$$\Delta z = H(z)r_s$$

Distance Duality Relation

In any metric theory of gravity, if photons propagate along null geodesics and obey number conservation:

$$\eta(z) \equiv \frac{d_L(z)}{(1+z)^2 d_A(z)} = 1$$

Etherington Philos. Mag. 15, 761 (1933).

Distance Duality Relation

In any metric theory of gravity, if photons propagate along null geodesics and obey number conservation:

$$\eta(z) \equiv \frac{d_L(z)}{(1+z)^2 d_A(z)} = 1$$

Etherington Philos. Mag. 15, 761 (1933).

Let us set $\eta = 1$ and rearrange the DDR as follows:

$$H_0 = \frac{1}{(1+z)^2} \frac{H_0 d_L(z)}{H(z) d_A(z)} H(z)$$

H(z)d_A(z): from a combination of line-of-sight and transverse BAO measurements, without the need of an external anchor for the sound horizon at drag epoch [7 data points from BOSS]

- Cosmic chronometers (CC) measurements provide H(z) data that is free from calibration and does not depend on the underlying cosmological model [a compilation of 30 measurements]
- **H_Od_L** can be obtained from measurements of SNIa without the need of calibration [Pantheon]

Distance Duality Relation

In any metric theory of gravity, if photons propagate along null geodesics and obey number conservation:

$$\eta(z) \equiv \frac{d_L(z)}{(1+z)^2 d} \qquad H(z) = -\frac{1}{1+z} \frac{\Delta z}{\Delta t}$$
Let us set $\eta = 1$ and rearrange the DDR as follows:

$$H_0 = \frac{1}{(1+z)^2} \frac{H_0 d_L(z)}{H(z) d_A(z)} H(z)$$

H(z)d_A(z): from a combination of line-of-sight and transverse BAO measurements, without the need of an external anchor for the sound horizon at drag epoch [7 data points from BOSS]

- Cosmic chronometers (CC) measurements provide H(z) data that is free from calibration and does not depend on the underlying cosmological model [a compilation of 30 measurements]
- **H_Od_L** can be obtained from measurements of SNIa without the need of calibration [Pantheon]

Combining BAO and CC first, and then folding in SNIa, we can get a *calibration- and model-independent* estimate of the Hubble parameter:

$$H_0 = \frac{1}{(1+z)^2} \frac{\left[H_0 d_L(z)\right]^{\text{SNIa}}}{\left[d_A(z)\right]^{\text{BAO}+\text{CC}}}$$

Fabrizio Renzi (PD)

Combining BAO and CC first, and then folding in SNIa, we can get a *calibration- and model-independent* estimate of the Hubble parameter:

$$H_0 = \frac{1}{(1+z)^2} \frac{\left[H_0 d_L(z)\right]^{\text{SNIa}}}{\left[d_A(z)\right]^{\text{BAO+CC}}}$$

Fabrizio Renzi (PD)

Some technicalities:

- **=** the three data set cover roughly same range, $0 \leq z \leq 2.5$, but data points are not exactly at same redshifts
- we choose the redshifts of BAO data points as reference ones, and perform GP fit to SNIa and CC data to get corresponding data points (including error bars), i.e. PDFs

- **a** at each of the 7 redshifts, we draw 10k realizations of $[H_0 d_L]^{\text{SNIe}}$ and 10k realizations of $[d_A]^{\text{BAO+CC}}$. We combine them together following the DDR equation to get realizations (PDFs) of H₀ at each redshift.
- resulting mean values are consistent within error bars, but they are different at each redshift, with two being notably lower...(next slide!)
- we finally multiply the 7 PDFs to get one PDF for H from which we can extract mean and variance using the inverse transform sampling.
- Overall the method is a combination of GP and MCMC, we refer to it as GPMC.
- It is important to highlight that we work strictly within the redshift range of the data, without performing any extrapolation.

 $H_0 = 69.5 \pm 1.7 \,\mathrm{km/s/Mpc}$

correspondingly we infer the absolute magnitude to be $M_B = -19.355 \pm 0.054$ i.e a shift of $|\delta M_B| = 0.138 \pm 0.067$ wrt SH0ES value.

in agreement with $\mu_{Cepheid} - \mu_{TRGB} = -0.139 \pm 0.024 \text{ mag}$ [Efstathiou, arXiv:2007.10716]

A redshift trend in H_0 ?

 $H_0 = 69.5 \pm 1.7 \,\mathrm{km/s/Mpc}$

A redshift trend in H_0 ?

Assuming the validity of the DDR, is equivalent to assuming that *the two probes are consistent tracers of cosmic expansion*.

If this was not the case, the H₀ inferred from the previous procedure would not be a constant, but it would rather show some, *unphysical trend in redshift*.

perhaps a mild dynamical feature in H(z)

Ζ