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Italian Data Processing CenterThe DPCT hosts the 
systems of  

the Astrometric 
Verification Unit (AVU), 

run by ALTEC (To) under 
the scientific supervision 
of the astrometric group 

INAF-OATo for ASI
Size at completion ~  2 PB 

Gaia is the ESA cornerstone mission, a 
wide European effort involving almost 
450 scientists, launched in 2013. 

AVU is in charge, for DPAC, of the verification, through the 
Global Sphere Reconstruction (GSR), of the absolute 

astrometry achieved through the baseline astrometric model   

Gaia Data 
Processing and 

Analysis Consortium 
(DPAC)



Gaia measures 
position (direction and distance)& velocity 

of over 1 billion stars in our Galaxy
with an accuracy of up to 10 millionths-of-

arcsecond 

Data Release Scenario  http://www.cosmos.esa.int/web/gaia/release

end-of-mission astrometric 
accuracies better than 5-10μas 

(brighter stars)  
130-600μas (faint targets)

Science with one/two billion objects in 3 dimension,  
from structure and evolution of the MW to GR tests 

G < 20.7 mag

G_RVS= 16.2  
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Early Data Release 3 in numbers  

https://www.cosmos.esa.int/web/gaia/early-data-release-3
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https://www.cosmos.esa.int/web/gaia/early-data-release-3


h pertubations  at µ-arcsec due to the 
solar system bodies. Off-diagonal terms 
are included (IAU metric) 

solar system metric 

Gaia-observer laboratory:  
the Solar System

2 independent GR models (GREM and RAMOD)-> 
the Consortium constitued for the Gaia data 

reduction (DPAC)  
agreed to set up, respectively, two independent 

global sphere solutions: AGIS and GSR. 

micro-arcsecond accuracy+ dynamical gravitational fields 
relativistic models of light propagation: 

 RELATIVISTIC ASTROMETRY
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  Gaia is delivering a relativistic kinematic 

Gaia: the onset of gravitational astrometry era 

  the position and velocity data, comprising the outputs of the Gaia mission, are fully 
GR compliant             —>> Given a relativistic approach for the data analysis and 

processing, any subsequent exploitations should be consistent with 
the precepts of the theory underlying the astrometric model.  

The GR picture of the MW can ensure a strong and coherent Local 
Cosmology laboratory against which any model of the Galaxy can be fully 
tested 
➢ Local Cosmology: how well distances and kinematics at the scale of 

the Milky Way disk compare with the Lambda-CDM model predictions

In the most advanced simulations Λ-CDM cosmology assumes an average FLRW evolution while growth in 
structure is treated by Newtonian N-body simulations:  
“ Friedman tells space how to curve and Newton tells mass how to move”  
Alan A. Coley, David L. Wiltshire 

General Relativity (GR) is only partially considered 
Missing: ray-tracing to obtain true observables!

A fully relativistic model for the Milky Way (MW) structure  
should be pursued! 

   For the Gaia-like observer the weak gravitational 
regime turns out to be "strong" when one has to 
perform high accurate measurements 
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https://arxiv.org/find/gr-qc/1/au:+Coley_A/0/1/0/all/0/1
https://arxiv.org/find/gr-qc/1/au:+Wiltshire_D/0/1/0/all/0/1


Flat rotation curves in disk galaxies - a 
longest outstanding problem in astronomy - 
provide the main observational support to 
the hypothesis of surrounding dark matter.
Adding a “dark matter” halo allows a good fit 
to data 

S te l l a r k i nema t i cs , as t r ace r o f 
gravitational potential, is the most reliable 
observable for gauging different matter 
components 

Rotation curves are distinctive features of spiral 
galaxies like our Milky Way, a sort of a kinematical/
dynamical signature, like the HR  diagram for the 
astrophysical content.

By routinely scanning individual sources 
throughout the whole sky,  

Gaia directly measures the (relativistic) 
kinematics of the stellar component

 Flat Galactic rotation curves at kpc scale as first GR test for the MW 

-> the rotation curve of the MW used as 
a first test for a GR Galaxy with the Gaia 

DR2 data
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In general one assumes that: 

gravitational potential or “relativistic effects” at the MW scale are usually 
“small”, then  

✓negligible..

(vGal/c)2 ∼ 0,69 x10-6 (rad) ∼100 mas 
    (vGal/c)3 ∼ 0,57 x10-9 (rad) ∼

the individual DR2 astrometric error is  
throughout most of its magnitude range

“weakly” relativistic effect could be relevant 

✓locally Newton approximation is retained valid at each point.. 

but

weak field regime @Milky Way scale

≤ 100μas

The small curvature limit in General 
Relativity  may not coincide with the 

Newtonian regime

 need to compare the GR model and the classical one

120μas
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“Classic” Milky Way (MWC)  model with Dark matter halo

ρb =
3b2

b Mb

4π(r2 + b2
b)5/2 ρd(R, z) =

Mdb2
d

4π
[adR2 + (ad + 3 z2 + b2

d )(ad + z2 + b2
d )2]

[R2 + (ad + z2 + b2
d )2]

5/2

(z2 + b2
d )3/2

ρh(r) = ρhalo
0

1
(r/Ah)(1 + r/Ah)2

MWC velocity profile 

3. Navarro-Frank-White DM halo2. Miyamoto-Nagai thin and thick disks1. Plummer bulge 

∇2Φtot = 4πG(ρb + ρtd + ρTd + ρh) V2
c = R (dΦtot /dR)

Pouliasis, E., Di Matteo, P., & 
Haywood, M. 2017, A&A, 598, A66 

Bovy, J. 2015, ApJs, 216, 29  McMillan, P. J. 2017, MNRAS, 465, 76-94

Navarro, J. F., Frenk, C. S. and White, S. D. M. 1996, ApJ, 462, 563 

 bulge spherical radius

 bb=0.3 kpc
Korol, Rossi & Barausse (2019) 

btd = 0.25 kpc and bTd = 0.8 kpc 

Mb, Mtd, MTd, atd, aTd , bd, ρ0
halo and Ah correspond to the bulge mass, the masses and the scale lengths/

heights of the thin and thick disks, the halo scale density, and the halo radial scale

Newtonian limit applied 
for Galactic dynamics 
-> Poisson’s equation

∇2Φ = 4πGρ
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Galactic metric-diskds2 = gαβdxαdxβ = − dt2 + 2Ndϕdt + (r2 − N2)dϕ2 + eν(dr2 + dz2)

A GR model for the Milky Way

(Balasin and Grummiler, Int.J. Mod. Phys., 2008)

Einstein field Eq. from the metric disk 

r∂zν + ∂rN∂zN = 0

2r2(∂r∂rν + ∂z∂zν) + (∂rN )2 + (∂zN )2 = 0

r(∂r∂rN + ∂z∂zN ) − ∂rN = 0

(∂rN )2 + (∂zN )2 = kr2ρeν

2r∂rν + (∂rN )2 − (∂zN )2 = 0

1. Stationarity and axisymmetry spacetime 
2. Reflection symmetry (around the galactic plane) 
3. The disk is an equilibrium configuration of a pressure-less rotating perfect fluid (a GR dust) 
4. The masses inside a large portion of the Galaxy interact only gravitationally and reside far from 
 the central bulge region 
5.The rotational curve is due to the angular-momentum sustained stellar population 
6. Stars = dust grains, co-moving with the Gaia-observer

N(r, z) = V0(Rout − rin) +
V0

2 ∑
±

( (z ± rin)2 + r2 − (z ± Rout)2 + r2)

rin = bulge size  
Rout =  extension of the MW disk-> Galaxy size 
V0 =   velocity in the flat regime

|z| < rin

The function N(r,z) was constrained by Balasin & Grumiller 
(BG) to the separation anstaz N(r,z) = R(r)F(z) and the 
reflection symmetry assumption.

Einstein equation are very difficult to solve analytically and Galaxy is a multi-structured object making it even 
the more difficult to detail a metric for the whole Galaxy
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ρ(R, z) = e−ν(R,z) 1
8πR2 [(∂RN(R, z))2 + (∂zN(R, z))2]



Observer in circular motion

uα = Γ (kα + βmα)
uα = γ (eα

0̂
+ ζ ̂ϕeα

̂ϕ)

ds2 = − M2dt2 + (r2 − N2)(dϕ + Mϕdt)2 + eν(dr2 + dz2)

Zα = (1/M )(∂t − Mϕ∂ϕ)

ζ ̂ϕ =
gϕϕ

M
(β + Mϕ)

The Gaia observer linked to the gravitational dragging

ζ ̂ϕ =
N(r, z)

r

 orthonormal frame adapted to the ZAMO

if static (as the observer in BCRS, Gaia catalogue)

β constant angular velocity (with respect to infinity), Γ  normalization factor 

γ Lorentz factor

ZAMO frames = locally non-rotating observers, zero angular momentum with respect 
to flat infinity and move on worldlines orthogonal to the hypersurfaces t=constant

or

M = r / (r2 − N2), Mϕ = N/(r2 − N2)

|V(r, z) | = N(r, z)/r ∝ g0ϕ
V: spatial velocity of the co-rotating dust as seen by 
an asymptotic observer at rest wrt to the center of 

the Galaxy (or the rotation axis) 

Gravitational dragging working at disk scale

The question before us: the MW rotation curve, dark matter or geometry driven?
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(de Felice and Bini, “Classical measurements in curved space-time”)



i. Complete Gaia DR2 astrometric dataset (                   parallax) 
ii. Parallaxes good to 20% (i.e. parallax_over_error ≥ 5)
    —> parallaxes to better than 20% allow to deal with similar (quasi–gaussian) statistics when transforming to distances
iii. Gaia-measured velocity along the line of sight, i.e. radial velocity, with better than 20% 

uncertainties from Gaia DR2

i.+ii.+iii.—> proper 6D reconstruction of the phase-space location occupied by each individual 
star as derived by the same observer

iv. Only for Early Type stars, cross-matched entry in the 2MASS catalog following Poggio et al. (2018)
—> for the actual materialization of the sample

1. Full transformation (including complete error propagation) from 
the ICRS equatorial to heliocentric galactic coordinates


2. then translation to the galactic center

Data sample: full reconstruction of disc kinematics based on DR2 data only

very homogenous sample of 5277 early type stars and 325 classical 
type I Cepheids.


99.4 % of the sample in 4,9 ≤ r ≤ 15,8 kpc (a range of 11 kpc) and below 

1 kpc from the galactic plane (characteristic scale height for the validity of the BG model)


to date the best angular-momentum sustained stellar population 
of the Milky Way that better traces its observed RC!

α, δ, μα, μδ,
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Ref:On testing CDM and geometry-driven Milky Way rotation curve models with Gaia DR2- Crosta M., 
Giammaria M., Lattanzi M. G., Poggio E.,MNRAS, Volume 496, Issue 2, August 2020, Pages 2107–2122

MWC

BG 

For our  likelihood analysis the 
two models appear almost 
identically consistent with the 
data.  


Weak field GR off-diagonal 
term mimic DM in MW!

 MCMC fit to the Gaia DR2 data - Classical (MWC) and GR (BG) RC 

Both models fit the data! 
Best fit estimates as the median of the posteriors 
and their 1σ level credible interval

For both models, the errors due to the Bayesian analyses are at least one order of 
magnitude lower than the resulting uncertainties of the parameters. 

For the BG free parameters uniform prior distributions (first general relativistic model 
fitted to data) 

For MWC normal prior distributions (comparison of our bayesian analysis with the 
most recent observational estimates)

MW rotational curve with Gaia DR2 7

BG model ✓ ��
✓ �+✓

rin [kpc] 0.39 -0.25 +0.36
Rout [kpc] 47.87 -14.80 +23.96
V0 [km/s] 263.10 -16.44 +25.93

e⌫0 0.083 - 0.014 +0.014

Table 2. rin , Rout and V0 are the parameters of BG’s model that cor-
respond, respectively, to the lower and upper radial limits, i.e. the bulge
radial size and the Galaxy radius, and the normalization of the velocity in
the flat regime. e⌫0 is the estimated dimensionless value characterizing the
conformal factor function, assumed constant, in line element (4). ✓, ��

✓ and
�+✓ are the mean and the 1� credible interval limits from the posteriors of
the parameters (see also the values in Table C1 of appendix C, to which this
table is fully compliant).

regular units. In other words, these quantities identify the range for
which the 4D spacetime metric used can describe the MW disk as
an axisymmetric stationary rotating dust.

This relativistic velocity profile is then compared to the well-
studied classical models for the MW described in section 2. Each
contribution to the azimuthal (circular) velocity in the classical
model is calculated by utilizing the GALPY python package (Bovy
2015).

We fit both the BG and MWC models to the DR2 azimuthal
velocity data V�(Ri), and the corresponding uncertainties, from
Table 1, utilizing the log likelihood function

logL = �1
2

’
i

 [V�(Ri) � V
exp
� (Ri |✓)]2

�2
V�

+ log
⇣
�2
V�

⌘!

� 1
2

 
[⇢(R�) � ⇢exp(R� |✓)]2

�2
⇢�

+ log
⇣
�2
⇢�

⌘!
, (15)

where V
exp
� (Ri |✓) are the expected velocity values evaluated

with the two theoretical models at each Ri for any trial set of their
corresponding parameter vector ✓.

For the "observed" (local) baryonic matter density at the Sun
and its corresponding error, i.e. ⇢(R�) and �� , in the likelihood
function above, we adopted the most recent values, respectively
0.084 and 0.012 M�pc�3, given in McKee, Parravano & Hollen-
bach (2015).

For the BG model (Balasin & Grumiller 2008), ⇢exp(R� |✓) at
z=0 is calculated via the 00-term of Einstein’s equation (see section
4), while for the MWC model ⇢exp(R� |✓) = ⇢b(R = R�, z =
0) + ⇢td(R = R�, z = 0) + ⇢Td(R = R�, z = 0) from equations (1)
and (2).

In summary, we decided for 7 free parameters when fitting
with the MWC model, i.e. Mb , Mtd , MTd , atd , aTd ⇢

halo
0 and

Ah . Instead, when dealing with the BG model, we have a total of 4
free parameters, V0, Rout , rin and e

⌫0 (see section 4), and contrary
to the MWC case, the use of the BG density function ⇢BG in the
likelihood expression above is mandatory, as e

⌫0 is not present in
V
BG(R).

We finally used the Markov-Chain Monte-Carlo (MCMC)
method to fit to the data (see appendix B); Tables 2 and 3 report the
best fit estimates as the median of the posteriors and their 1� level
credible interval. For both models, the errors due to the Bayesian
analyses are at least one order of magnitude lower than the result-
ing uncertainties of the parameters. This shows that the analysis is
intrinsically consistent and the simulation errors are negligible.

In Figure 1, the star-like symbols show median V� versus R

MWC model ✓ ��
✓ �+✓

Mb [1010M�] 1.0 -0.4 +0.4
Mt d [1010M�] 3.9 -0.4 +0.4
MT d [1010M�] 4.0 -0.5 +0.5

at d [kpc] 5.2 -0.5 +0.5
aT d [kpc] 2.7 -0.4 +0.4

⇢halo
0 [M�pc�3] 0.009 -0.003 +0.004

Ah [kpc] 17 -3 +4

Table 3. Mb , Mt d , MT d , at d , aT d ,⇢halo
0 and Ah are the free parameters

of the MWC model: the bulge mass, the masses and the scale lengths of the
two disks, the halo scale density, and the halo radial scale, respectively.
✓, ��

✓ and �+✓ are the mean and the 1� credible interval limits from the
posteriors of the parameters (see also the values in Table C3 of appendix C,
to which this table is fully compliant).

as derived with the Gaia DR2 data in Table 1. The two MCMC
estimated velocity profiles, drawn as the coloured solid lines in Fig.
1, are both good representations of the data , i.e., they are statistically
equivalent (see appendix C).

The least constrained parameter in the BG model is the "up-
per" radial limit, i.e., Rout . As already discussed, this was actually
expected due to a relatively limited radial coverage of the Gaia-only
velocity data we have used. Besides, we obtain an interesting result
on the lower limit parameter rin. According to Balasin & Grumiller
(2008, after their Eq. 26), as rin “determines the transition between
the linear (r ⌧ rin) and the flat (rin ⌧ r ⌧ Rout ) regime of the
velocity profile”, the size of the bulge “ may be predicted from the
velocity profile”. Remarkably, the fitted value rin = 0.39 kpc in Ta-
ble 2 is quite close to the value of bb = 0.3 kpc we adopted from
Pouliasis et al. (2017; see also Eilers et al, 2019) for the Plummer’s
radius of the bulge contribution to the MW density in our MWC
model (see Eq. 1 in sec. 2.1). It is also important to highlight here
the back-compatibility of this experimental result with the z distri-
bution of our selected disk population (see Table 1 and its caption):
to ensure a consistent application of the BG velocity model, the
selected stars resulted in a population spatially constrained to small
distances from the plane (average median height < zmedian >⇡
-0.03 kpc and a corresponding average dispersion of 0.2 kpc), and,
in turn,< zmedian > rin virtually everywhere across the radial
range spanned by the Gaia rotational velocity data. Despite this abil-
ity of providing an independent measurements of the radial size of
the MW bulge directly from the velocity data, the existence of the
critical regions at |z | > 0.39 kpc limits the physical validity of the
BG model and prevents it from describing large parts of the actual
Galaxy.

It is worth mentioning that Almeida et al. (2016) converted
the observational RC’s for some external galaxies into a data set
of an e�ective analogue (called the "e�ective Newtonian" velocity
profile VeN ) in order to define a method to compare non-Newtonian
gravity models with or without some dark matter. From the fit of
the Newtonian velocity profile to the e�ective Newtonian curve
the authors derive some baryonic parameters (basically by solving
Poisson-like equations). With the application of such a method, it
appears that both CT and BG approaches have strong problems
fitting galaxy rotation curves without dark matter. On the other
end, the statistical technique used for the fit, i.e. a �2 minimization
procedure, could be insu�cient for exploring the parameter space
(see appendix B) and some parameters appear not suitable for a
consistent representation of the BG model. For example, the galaxy
radius R ⇠ 107 kpc is out of the range given by the BG solution and
galaxies cannot be considered isolated at such distances. Despite

MNRAS 000, 1–14 (2019)
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radius of the bulge contribution to the MW density in our MWC
model (see Eq. 1 in sec. 2.1). It is also important to highlight here
the back-compatibility of this experimental result with the z distri-
bution of our selected disk population (see Table 1 and its caption):
to ensure a consistent application of the BG velocity model, the
selected stars resulted in a population spatially constrained to small
distances from the plane (average median height < zmedian >⇡
-0.03 kpc and a corresponding average dispersion of 0.2 kpc), and,
in turn,< zmedian > rin virtually everywhere across the radial
range spanned by the Gaia rotational velocity data. Despite this abil-
ity of providing an independent measurements of the radial size of
the MW bulge directly from the velocity data, the existence of the
critical regions at |z | > 0.39 kpc limits the physical validity of the
BG model and prevents it from describing large parts of the actual
Galaxy.

It is worth mentioning that Almeida et al. (2016) converted
the observational RC’s for some external galaxies into a data set
of an e�ective analogue (called the "e�ective Newtonian" velocity
profile VeN ) in order to define a method to compare non-Newtonian
gravity models with or without some dark matter. From the fit of
the Newtonian velocity profile to the e�ective Newtonian curve
the authors derive some baryonic parameters (basically by solving
Poisson-like equations). With the application of such a method, it
appears that both CT and BG approaches have strong problems
fitting galaxy rotation curves without dark matter. On the other
end, the statistical technique used for the fit, i.e. a �2 minimization
procedure, could be insu�cient for exploring the parameter space
(see appendix B) and some parameters appear not suitable for a
consistent representation of the BG model. For example, the galaxy
radius R ⇠ 107 kpc is out of the range given by the BG solution and
galaxies cannot be considered isolated at such distances. Despite
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2 rin

VBG
ϕ (R) =

V0

R (Rout − rin + r2
in + R2 − R2

out + R2)

Colored area= reliability intervals of the fitted curves

bb=0.3 kpc!
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The baryonic density profile via Einstein field eq. 

According to the relativistic model 
  

solar masses/cubic parsec 

In agreement, with current independent  
estimates 

0.077±0.007 Msun pc−3  

(Bienayme et al.  2014, A&A, 571) 

0.084 ± 0.012 Msun pc−3 

( McKee et al. 2015, ApJ, 814, 13 )


0.098+0.006 Msun pc−3 

(Garbari et al. 2012MNRAS, 425, 1445)


 

0.083 ± 0.006

Density profile of the MW at z=0 derived from 100 random draws from the 
posterior distribution of the fit As expected in the disk region (z ∼ 0), for 

MWC the dominant matter is baryonic, 
while DM is a minor component there, i.e. 
ρDM ∼ 0.01M⊙pc-3

range of the data

Sun pos.

2 rin
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BG model ✓ ��
✓ �+✓

rin [kpc] 0.39 -0.25 +0.36
Rout [kpc] 47.87 -14.80 +23.96
V0 [km/s] 263.10 -16.44 +25.93

e⌫0 0.083 - 0.014 +0.014

Table 2. rin , Rout and V0 are the parameters of BG’s model that cor-
respond, respectively, to the lower and upper radial limits, i.e. the bulge
radial size and the Galaxy radius, and the normalization of the velocity in
the flat regime. e⌫0 is the estimated dimensionless value characterizing the
conformal factor function, assumed constant, in line element (4). ✓, ��

✓ and
�+✓ are the mean and the 1� credible interval limits from the posteriors of
the parameters (see also the values in Table C1 of appendix C, to which this
table is fully compliant).

regular units. In other words, these quantities identify the range for
which the 4D spacetime metric used can describe the MW disk as
an axisymmetric stationary rotating dust.

This relativistic velocity profile is then compared to the well-
studied classical models for the MW described in section 2. Each
contribution to the azimuthal (circular) velocity in the classical
model is calculated by utilizing the GALPY python package (Bovy
2015).

We fit both the BG and MWC models to the DR2 azimuthal
velocity data V�(Ri), and the corresponding uncertainties, from
Table 1, utilizing the log likelihood function

logL = �1
2

’
i

 [V�(Ri) � V
exp
� (Ri |✓)]2

�2
V�

+ log
⇣
�2
V�

⌘!

� 1
2

 
[⇢(R�) � ⇢exp(R� |✓)]2

�2
⇢�

+ log
⇣
�2
⇢�

⌘!
, (15)

where V
exp
� (Ri |✓) are the expected velocity values evaluated

with the two theoretical models at each Ri for any trial set of their
corresponding parameter vector ✓.

For the "observed" (local) baryonic matter density at the Sun
and its corresponding error, i.e. ⇢(R�) and �� , in the likelihood
function above, we adopted the most recent values, respectively
0.084 and 0.012 M�pc�3, given in McKee, Parravano & Hollen-
bach (2015).

For the BG model (Balasin & Grumiller 2008), ⇢exp(R� |✓) at
z=0 is calculated via the 00-term of Einstein’s equation (see section
4), while for the MWC model ⇢exp(R� |✓) = ⇢b(R = R�, z =
0) + ⇢td(R = R�, z = 0) + ⇢Td(R = R�, z = 0) from equations (1)
and (2).

In summary, we decided for 7 free parameters when fitting
with the MWC model, i.e. Mb , Mtd , MTd , atd , aTd ⇢

halo
0 and

Ah . Instead, when dealing with the BG model, we have a total of 4
free parameters, V0, Rout , rin and e

⌫0 (see section 4), and contrary
to the MWC case, the use of the BG density function ⇢BG in the
likelihood expression above is mandatory, as e

⌫0 is not present in
V
BG(R).

We finally used the Markov-Chain Monte-Carlo (MCMC)
method to fit to the data (see appendix B); Tables 2 and 3 report the
best fit estimates as the median of the posteriors and their 1� level
credible interval. For both models, the errors due to the Bayesian
analyses are at least one order of magnitude lower than the result-
ing uncertainties of the parameters. This shows that the analysis is
intrinsically consistent and the simulation errors are negligible.

In Figure 1, the star-like symbols show median V� versus R

MWC model ✓ ��
✓ �+✓

Mb [1010M�] 1.0 -0.4 +0.4
Mt d [1010M�] 3.9 -0.4 +0.4
MT d [1010M�] 4.0 -0.5 +0.5

at d [kpc] 5.2 -0.5 +0.5
aT d [kpc] 2.7 -0.4 +0.4

⇢halo
0 [M�pc�3] 0.009 -0.003 +0.004

Ah [kpc] 17 -3 +4

Table 3. Mb , Mt d , MT d , at d , aT d ,⇢halo
0 and Ah are the free parameters

of the MWC model: the bulge mass, the masses and the scale lengths of the
two disks, the halo scale density, and the halo radial scale, respectively.
✓, ��

✓ and �+✓ are the mean and the 1� credible interval limits from the
posteriors of the parameters (see also the values in Table C3 of appendix C,
to which this table is fully compliant).

as derived with the Gaia DR2 data in Table 1. The two MCMC
estimated velocity profiles, drawn as the coloured solid lines in Fig.
1, are both good representations of the data , i.e., they are statistically
equivalent (see appendix C).

The least constrained parameter in the BG model is the "up-
per" radial limit, i.e., Rout . As already discussed, this was actually
expected due to a relatively limited radial coverage of the Gaia-only
velocity data we have used. Besides, we obtain an interesting result
on the lower limit parameter rin. According to Balasin & Grumiller
(2008, after their Eq. 26), as rin “determines the transition between
the linear (r ⌧ rin) and the flat (rin ⌧ r ⌧ Rout ) regime of the
velocity profile”, the size of the bulge “ may be predicted from the
velocity profile”. Remarkably, the fitted value rin = 0.39 kpc in Ta-
ble 2 is quite close to the value of bb = 0.3 kpc we adopted from
Pouliasis et al. (2017; see also Eilers et al, 2019) for the Plummer’s
radius of the bulge contribution to the MW density in our MWC
model (see Eq. 1 in sec. 2.1). It is also important to highlight here
the back-compatibility of this experimental result with the z distri-
bution of our selected disk population (see Table 1 and its caption):
to ensure a consistent application of the BG velocity model, the
selected stars resulted in a population spatially constrained to small
distances from the plane (average median height < zmedian >⇡
-0.03 kpc and a corresponding average dispersion of 0.2 kpc), and,
in turn,< zmedian > rin virtually everywhere across the radial
range spanned by the Gaia rotational velocity data. Despite this abil-
ity of providing an independent measurements of the radial size of
the MW bulge directly from the velocity data, the existence of the
critical regions at |z | > 0.39 kpc limits the physical validity of the
BG model and prevents it from describing large parts of the actual
Galaxy.

It is worth mentioning that Almeida et al. (2016) converted
the observational RC’s for some external galaxies into a data set
of an e�ective analogue (called the "e�ective Newtonian" velocity
profile VeN ) in order to define a method to compare non-Newtonian
gravity models with or without some dark matter. From the fit of
the Newtonian velocity profile to the e�ective Newtonian curve
the authors derive some baryonic parameters (basically by solving
Poisson-like equations). With the application of such a method, it
appears that both CT and BG approaches have strong problems
fitting galaxy rotation curves without dark matter. On the other
end, the statistical technique used for the fit, i.e. a �2 minimization
procedure, could be insu�cient for exploring the parameter space
(see appendix B) and some parameters appear not suitable for a
consistent representation of the BG model. For example, the galaxy
radius R ⇠ 107 kpc is out of the range given by the BG solution and
galaxies cannot be considered isolated at such distances. Despite

MNRAS 000, 1–14 (2019)

ρ(R, z) = e−ν(R,z) 1
8πR2 [(∂RN(R, z))2 + (∂zN(R, z))2]
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The relativistic dragging effect has no newtonian counterpart, thus we compared: 


(i) the MWC baryonic-only contribution  with the effective Newtonian profile (Binney & Tremaine 1988) 
calculated by using the BG density:


(ii) the MWC dark matter-only contribution (halo) with the "dragging curve" traced by subtracting        to VBG 
. 

VBG
eN

Dragging effect vs. halo effect

(VBG
drag(Ri; |z |eff | ) = (VBG(R))2 − (VBG

eN (R; |z |eff ))2

For the effective BG disk half- thickness |z|eff, the 
minimization process yields |z|eff=0.215kpc

Ref: Crosta M., Giammaria M., Lattanzi M. G., Poggio E., (2020)

This favourably points to the fact that a 
gravitational dragging-like effect could sustain a 

flat rotation curve

amount of rotational velocity across the 
MW plane due to gravitational dragging

R < 5 kpc could be the breaking 
point for the direct applicability of 
the BG model to the Milky Way, as 
it calls for a more suitable 
relativistic description of its central 
regions

VBG
eN

btd = 0.25 kpc!
∑

i

(VBG
eN (Ri, k) − VMWC

eN (Ri))2 /N |zk | < rin
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Our interpretation of the fitted relativistic velocity profile with Gaia DR2 
depends only on the background geometry 

“ Mass tells space how to curve and 
space tells mass how to move”

DM: does not absorb or emit light but it exerts and responds only to the gravity force; it 
enters the calculation as extra mass (halo) required to justify the flat galactic rotational 
curves. 

GR: a gravitational dragging "DM-like" effect driving the Galaxy velocity rotation curve 
could imply that geometry - unseen but perceived as manifestation of gravity according 
to Einstein’s equation - is responsible of the flatness at large Galactic radii. 


Hypotheses non fingo & Occam’s razor?

the “ether” was cured by a new kinematics (i.e. special relativity) instead of “new” dynamic as inspired 
by the FitzGerald-Lorentz contraction phenomena (“extra molecular force”)  
“We know that electric forces are affected by the motion of the electrified bodies relative to the ether and it seems 
a not improbable supposition that the molecular forces are affected by the motion and that the size of the body 
alters consequently.”   FitzGerald, Science, 1889

By setting a coherent GR framework, one can effectively establish

i.e. to what extent  the MW structure is dictated by the standard theory of gravity
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Gaia EDR3 - Milky Way
Milky Way (MW) as a product of a cosmological evolution at z=0 ?

Early DataRelease 3 (EDR23, December 3rd 2020) 

34 months of data collection 


        1.8 billion stars complete astrometry (parallax) 

between G=12 and G=17


It also includes Gaia-measured radial velocities (RVs), 
although for "only" 7 million stars with estimated effective 

temperatures between 3550 and 6900 K 


Image credit: ESA/Gaia/DPAC 
Image license: CC BY-SA 3.0 IGO 

(~ 5600 stars from the sample of Crosta, Giammaria et al., 2020)
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In 2022, at the time of the Gaia 3rd release, DR3, extension of test with the rotation curve by another 
2-4 kpc (including both sides, inner and outer,  of the MW disk).  The Local Cosmology group in 
INAF-OATo (Lattanzi, Re Fiorentin,  Bucciarelli, Poggio, Spagna, Drimmel, Vecchiato) is focusing on:

For the observational side 
• Increase the sample: Gaia eDR3/DR3 (2022) + spectroscopic surveys (e.g. SDSS, APOGEE, 

LAMOST, RAVE, GES - Gaia ESO Survey, GALAH)

• Match with observations toward the Galactic center

• Expected sample size to increase from current 6000 to more than 100 thousands upper main 

sequence disc stars, with the addition of early-type B stars.

For the theoretical side 
• Improve the model: new solutions & new observables of the Einstein Field Equation (i.e. metric 

solutions to describe the Galaxy); a more consistent mathematical  solution of a relativistic 
velocity profile; a study, e.g., of the class of Lewis and Papapertou metrics in attempt to 
encompass all the different MW structures and to fit different conformal factors with the Gaia 
data (as we did for the density in BG case)


• Extend the MW “geometry” to other galaxies, including also relativistic kinematic (e.g.   
acceleration versus MOND)


• Comparison with N-body (cosmological) simulations also with numerical relativity (e.g. 
Einstein-Vlasov system solvers). The use of Gaia data must be parallel with the utilisation of 
the most advanced cosmological simulations with baryonic matter (gas and stars)

Next improvements

With more physically appropriate metrics, along with adequate solution, the Galaxy can play a 
reference role for other galaxies, much like the Sun for stellar models

 Stay tuned!  
Thank you for your attention
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