EXTRA COMPONENTS CONSISTENCY IN THE HUBBLE TENSION AND BBN

YO TODA

HOKKAIDO UNIVERSITY

Osamu Seto, Yo Toda Phys. Rev. D 103 (2021) 12, 123501

The Λ CDM model goes well in examining the evolution of our Universe.

Distant observation Based on A CDM model

Hubble Tension

Local observation

TODAY I WILL

Focus on the Extra radiation and Early dark Energy to solve the Hubble tension

Consider the extra components solutions to the Hubble tension and the consistency with BBN

Summarize that

extra radiation and Early dark Energy are the promising solutions But two scenarios are limited from BBN measurements

WHAT IS HUBBLE TENSION?

WHAT IS HUBBLE TENSION?

How is this derived?

Distant observations suggest $H_0 \rightleftharpoons 67 \text{ km/s/Mpc}$

This tension may indicate Beyond ACDM Physics

Local observations suggest $H_0 \rightleftharpoons 74 \text{ km/s/Mpc}$

ANGULAR SIZE OF THE SOUND HORIZON

Directly Measured

Angular Size : $\theta_* = \frac{r_*}{D_{M*}} = (1.0411 \pm 0.0003) \times 10^{-2}$ $r_* = \int_0^{t_*} \frac{c_s d\tilde{t}}{a(\tilde{t})}$: comoving sound horizon at the recombination $D_{M*} = \int_{t_*}^{t_0} \frac{d\tilde{t}}{a(\tilde{t})}$: comoving angular diameter distance

 $heta_*$

ANGULAR SIZE OF THE SOUND HORIZON

Directly Measured

Angular Size : $\theta_* = \frac{r_*}{D_{M*}} = (1.0411 \pm 0.0003) \times 10^{-2}$

$$\propto H_0 \frac{1}{\sqrt{\rho}}$$
 in the early universe

 $: \frac{dt}{a(t)} = \frac{dz}{H_0 \sqrt{\rho(z)/\rho_0}}$ \rho: energy density

Increase ρ in the early universe \Rightarrow Higher H_0

EXTRA COMPONENTS IN MY PRESENTATION

Increase ρ in the early universe \Rightarrow Higher H_0

Promising ways to increase ρ in the early universe are to introduce ... Extra radiation or Early Dark Energy

EXTRA RADIATION

The relativistic degrees of freedom N_{eff} (increased by dark radiation, axion ...)

$$\rho_{\text{radiation}} = \left(1 + \frac{7}{8} \left(\frac{4}{11}\right)^{\frac{4}{3}} N_{\text{eff}}\right) * \rho_{\text{photon}}$$

 $N_{\rm eff} = 3 + 0.046 + (Extra contribution)$ neutrino e⁺e⁻ annihilation

EXTRA RADIATION RELIVE THE HUBBLE TENSION

Planck 2018 results VI arxiv:1807.06209 CMB only

Higher N_{eff} increase H₀

 $N_{\rm eff} = 3.046 + (Extra contribution)$

$N_{\rm eff}$ VS. Helium mass fraction Y_P measurement

the additional component increases the expansion rate of the universe, the decoupling temperature of the weak interaction, the neutron-to-proton ratio

> Higher N_{eff} increase Y_P

 $N_{\rm eff} = 3.046 + (Extra contribution)$

N_{eff} VS. DEUTERIUM MEASUREMENT

Ryan Cooke *et al.* arXiv:1710.11129

Higher N_{eff} is favored from *D*/*H* measurement ?

$N_{\rm eff}$ is limited from the BBN consistency

Higher N_{eff} is disfavored from Y_P measurement

 $N_{\rm eff} = 3.046 + (Extra contribution)$

Planck + Pantheon + BAO + R19 + $(Y_P \& D/H)$

EARLY DARK ENERGY

Poulin et al. arXiv:1811.04083 Agrawal et al. arXiv:1904.01016 Niedermann & Sloth arXiv:1910.10739

Energy density of Dark Energy in the early universe was much larger than today

After the critical point energy density decreases faster than the background

CMB Photon last scattered

EARLY DARK ENERGY

In our analysis

Vary the amount of early dark energy $\frac{\Omega_{EDE}}{\Omega_{\Lambda}}$

(Referring to previous research)

Fix the critical point z = 3000

After the critical point, EDE decrease like kination (a^{-6})

TATALITY

EARLY DARK ENERGY RELIVE THE HUBBLE TENSION

Early Dark Energy Increase H₀

EDE VS. HELIUM MASS FRACTION Y_P MEASUREMENT

Early Dark Energy increase Y_P littel

EDE VS. DEUTERIUM D/H MEASUREMENT

Richard H. Cyburt, Brian D. Fields, Keith A. Olive arXiv:astro-ph/0302431

Early Dark Energy decreases D/H through $\Omega_b h^2$

EDE IS LIMITED FROM THE BBN CONSISTENCY

Higher Ω_{ede} is disfavored from D/H measurement

Higher N_{eff} is disfavored from Y_P measurement

Planck + Pantheon + BAO + R19 + ($Y_P \& D/H$)

TAKE-HOME MESSAGE

• Extra radiation and Early dark Energy are the promising solution of the Hubble tension

• Extra radiation is limited by the Helium abundance

Early Dark Energy is limited by the deuterium abundance

Thank you for your kind attention!

Osamu Seto, Yo Toda *Phys.Rev.D* 103 (2021) 12, 123501 y-toda@particle.sci.hokudai.ac.jp