

FIAS Frankfurt Institute for Advanced Studies

Unified DE-DM from Dynamical Space Time Cosmology

David Benisty

Under the Supervision of Prof. Eduardo Guendelman

Based on the papers:

• Unified dark energy and dark matter from dynamical spacetime Phys.Rev. D98 (2018) no.2, 023506

 Dark energy and dark matter unification from dynamical space time: observational constraints and cosmological implications
 JCAP 1906 (2019) 003

 Inflation compactification from dynamical spacetime Phys.Rev. D98 (2018) no.4, 043522

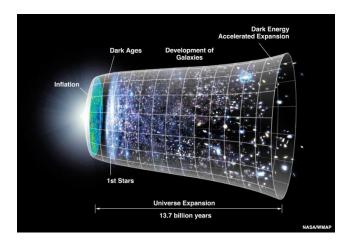
 Interacting Diffusive Unified Dark Energy and Dark Matter from Scalar Fields Eur.Phys.J. C77 (2017) no.6, 396

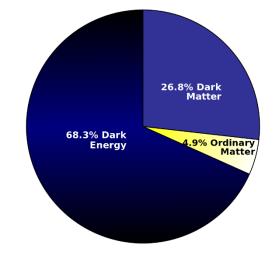
 Unification of dark energy and dark matter from diffusive cosmology Phys.Rev. D99 (2019) no.12, 123521

Dark Energy & Dark Matter

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = \Lambda g_{\mu\nu} + T_{\mu\nu}$$

• Why is the observed value so many orders of magnitude smaller than that expected in QFT?

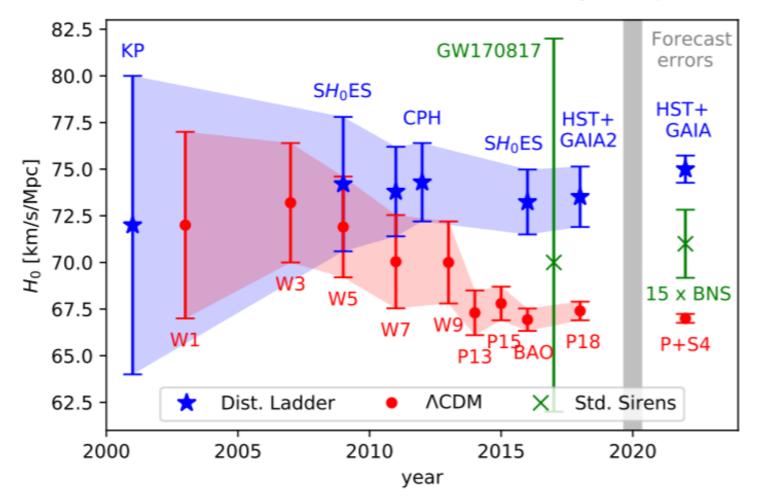




• Why is it of the same order of magnitude as the matter density of the universe at the present time?

Hubble Constant Tension

A sign for Dynamical DE?



Quintessence

May describe dynamical dark energy

E1 12

PHYSICAL REVIEW D 97, 043503 (2018) Jean-Baptiste Durrive, Junpei Ooba, Kiyotomo Ichiki, Naoshi Sugiyama

Ratra, P.; Peebles, L. (1988) Physical Review D. 37 (12) 3406

$$S = \int d^{4}x \sqrt{-g} \left[\frac{M_{\rm pl}^{2}}{2} R - \frac{1}{2} g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi - V(\phi) \right] + S_{\rm m},$$

$$\begin{cases} P_{\phi} = \frac{\dot{\phi}^{2}}{2} - V(\phi) \\ \rho_{\phi} = \frac{\dot{\phi}^{2}}{2} + V(\phi). \end{cases}$$

$$\begin{cases} 3H^{2}M_{\rm pl}^{2} = \rho_{\phi} + \rho_{\rm m} \\ \ddot{\phi} + 3H\dot{\phi} + V_{,\phi} = 0 \\ \dot{\rho}_{m} + 3H\rho_{\rm m} = 0 \end{cases}$$

$$\begin{cases} 3H^{2}M_{\rm pl}^{2} = \rho_{\phi} + \rho_{\rm m} \\ \ddot{\phi}_{m} + 3H\rho_{\rm m} = 0 \end{cases}$$

DOI: 10.1103/PhysRevD.81.043520 Gao, Martin Kunz, Andrew R. Liddle, David Parkinson

Unified DE&DM different from quintessence

• A basic stress energy tensor unified DE – DM from a single scalar field.

$$T^{\mu\nu} = -\frac{1}{2}\phi^{,\mu}\phi^{,\nu} + U(\phi)g^{\mu\nu}$$

Demanding $\nabla_{\mu}T^{\mu\nu} = 0$ gives: $\ddot{\phi} + \frac{3}{2}H\dot{\phi} + U'(\phi) = 0$

• For $U(\phi) = Const$, and in FRW metric:

$$\dot{\phi} \sim \frac{1}{a^{3/2}}$$

DUST + DARK ENERGY

Exponential Potential

• The density equations:

 $3H^2 = \kappa^2 \left[\frac{1}{2}\dot{\phi}^2 + \Lambda(\phi) + \rho_r + \rho_b\right],$

 $U(\phi) = U_0 \exp{-\lambda\phi}$

$$2\dot{H} + 3H^2 = -\kappa^2 [-\Lambda(\phi) + \frac{1}{3}\rho_r],$$

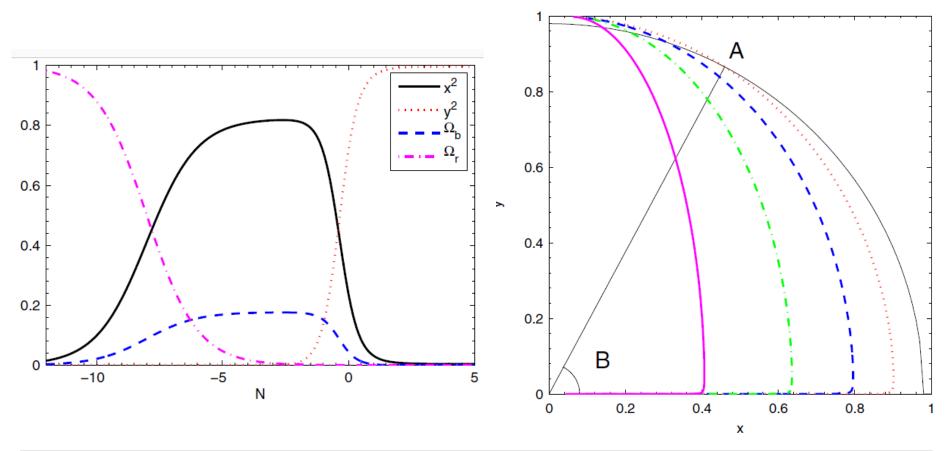
With the dimensionless quantities:

$$x \equiv \frac{\kappa \dot{\phi}}{\sqrt{6}H}, \qquad y \equiv \frac{\kappa \sqrt{\Lambda}}{\sqrt{3}H},$$
$$\sqrt{\Omega_b} \equiv \frac{\kappa \sqrt{\rho_b}}{\sqrt{3}H}, \qquad \sqrt{\Omega_r} \equiv \frac{\kappa \sqrt{\rho_r}}{\sqrt{3}H}.$$

Gives the Dynamical System Method:

$$\frac{dx}{dN} = -\frac{3}{2}x + \frac{\sqrt{6}}{2}\lambda y^2 + \frac{3}{2}x\left[1 - y^2 + \frac{1}{3}(1 - x^2 - y^2 - \Omega_b)\right],\\\\\frac{dy}{dN} = -\frac{\sqrt{6}}{2}\lambda xy + \frac{3}{2}y\left[1 - y^2 + \frac{1}{3}(1 - x^2 - y^2 - \Omega_b)\right],$$

Dynamical System Method



Name	x	у	$\sqrt{\Omega_b}$	Existence	Stability	Ω_{ϕ}	W _{\$\phi\$}
(a)	0	0	0	All λ	Unstable node	0	-
(b)	<u>x</u>	0	$\sqrt{1-x^2}$	All λ	Saddle line segment for $0 \le x \le 1$	x^2	0
(c)	$\frac{\sqrt{6}}{3}\lambda$	$\sqrt{1-\frac{2}{3}\lambda^2}$	0	$\lambda^2 \leq rac{3}{2}$	Stable node for $\lambda < \frac{\sqrt{6}}{2}$	1	$-1+\frac{2}{3}\lambda^2$

A toy model

• We start with a simple action of one dimensional particle in a potential V(x).

$$S = \int \dot{B} \left[\frac{1}{2} m \dot{x}^2 + V(x) \right] dt$$

• δB gives the total energy of a particle:

$$\frac{1}{2}m\dot{x}^2 + V(x) = E$$

• δx gives the condition for B:

$$\frac{\mathrm{d}}{\mathrm{d}t}\left(m\dot{x}\dot{B}\right) = \dot{B}V'(x)$$

GRAVITATIONAL THEORY WITH A DYNAMICAL SPACE-TIME E. I. GUENDELMAN Int.J.Mod.Phys. A25 (2010) 4081-4099 Dynamical time Theories

• L. multiplier which force a covariant conservation of a stress energy tensor:

$$S(\chi) = \int \sqrt{-g} \,\chi_{\mu;\nu} T^{\mu\nu}_{(\phi)} \,d^4x$$

• χ^{λ} - dynamical space-time vector field .

 $\chi_{\mu;\nu} = \partial_{\nu}\chi_{\mu} - \Gamma^{\lambda}_{\mu\nu}\chi_{\lambda}$ in the metric formalism ($g_{\alpha\beta;\gamma} = 0$).

$$\pi_0 = \frac{\partial \mathcal{L}}{\partial \chi_0} = T^0_{0(\phi)}$$

- $T^{\mu\nu}_{(\phi)}$ stress energy tensor. The variation according to χ gives a **conserved** diffusive energy: $\nabla_{\mu}T^{\mu\nu}_{(\chi)} = 0$, in addition to $T^{\mu\nu}_{(G)} = \frac{\delta S(\chi)}{\delta g^{\mu\nu}}$.
- Dynamical time is as T.M.T for $T^{\mu\nu}_{(\chi)} = g^{\mu\nu}\Lambda$.

Symmetries

• If the matter is coupled through its energy momentum tensor as:

$$T^{\mu\nu}_{(\chi)} \to T^{\mu\nu}_{(\chi)} + \lambda g^{\mu\nu}$$

the process will not affect the equations of motion.

• Similar to "normal ordering" in QFT.

$$\chi_{\mu} \rightarrow \chi_{\mu} + k_{\mu}$$

• Where k_{μ} is a Killing vector.

Phys.Rev. D98 (2018) no.2, 023506

David Benisty, Eduardo Guendelman

The action

The complete action

$$\mathcal{L} = -\frac{1}{2}R + \chi_{\mu;\nu}T^{\mu\nu}_{(\chi)} - \frac{1}{2}g^{\alpha\beta}\phi_{,\alpha}\phi_{,\beta} - V(\phi)$$

With the coupled stress energy tensor:

$$T^{\mu\nu}_{(\chi)} = -\frac{1}{2}\phi^{,\mu}\phi^{,\nu} + U(\phi)g^{\mu\nu}$$

The action contains three variables: $g^{\mu
u}$, ϕ , χ^{μ}

EoM

$$ds^2=dt^2-a(t)^2\left(rac{dr^2}{1-kr^2}+r^2d heta^2+r^2\sin^2 heta d\phi^2
ight)$$

• $\delta \chi^{\mu}$ - A constraint on scalar field:

$$\ddot{\phi} + \frac{3}{2}H\dot{\phi} + U'(\phi) = 0$$

• $\delta \varphi$ - A current:

$$\ddot{\phi}(\dot{\chi}_0 - 1) + \dot{\phi}[\ddot{\chi}_0 + 3\mathcal{H}(\dot{\chi}_0 - 1)] = U'(\phi)(\dot{\chi}_0 + 3\mathcal{H}\chi_0) - V'(\phi)$$

• $\delta g^{\mu\nu}$ - Dark energy and dark matter:

$$^{\mu\nu}$$
 - Dark energy and dark matter:
 $\rho = (\dot{\chi}_0 - \frac{1}{2})\dot{\phi}^2 + V(\phi)$
 $p = \frac{1}{2}\dot{\phi}^2(1 - \dot{\chi}_0 - 3\mathcal{H}\chi_0) - V(\phi) - \chi_0\dot{\phi}\dot{\phi}$

$$U(\phi) = Const$$

$$\ddot{\phi} + \frac{3}{2}H\dot{\phi} + U'(\phi) = 0 \quad \Longleftrightarrow \quad \ddot{\phi} = -\frac{3}{2}H\dot{\phi} \quad Or \quad \dot{\phi}^2 = \frac{2\Omega_m}{a^3}$$

$$\delta = \dot{\chi}_0 - 1$$

$$\delta = \dot{\chi}_0 - 1$$

$$\rho = (\dot{\chi}_0 - \frac{1}{2})\dot{\phi}^2 + V(\phi) \qquad \Longleftrightarrow$$
$$\rho = \frac{1}{2}\dot{\phi}^2(1 - \dot{\chi}_0 - 3\mathcal{H}\chi_0) - V(\phi) - \chi_0\dot{\phi}\ddot{\phi}$$

$$\rho = (\delta + \frac{1}{2})\dot{\phi}^2 + V(\phi),$$

$$p = \frac{\delta}{2}\dot{\phi}^2 - V(\phi),$$

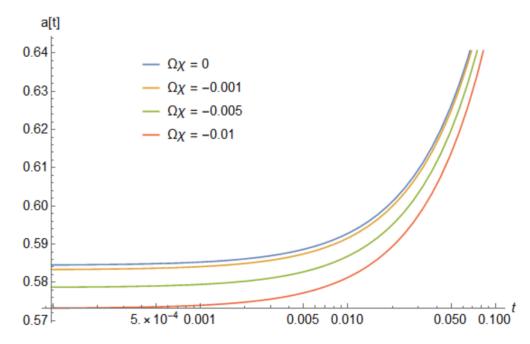
matter w = 0D. Cosmological constant w = -1Negative 2D radiation w = 1/2

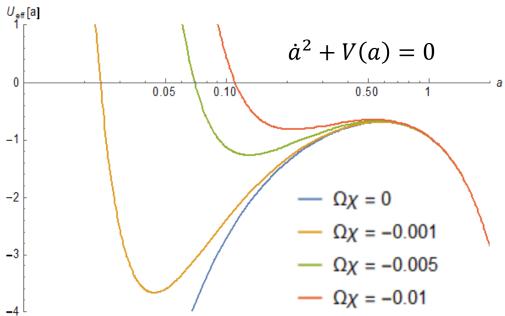
Constant potentials

$$\begin{split} \ddot{\phi} + \frac{3}{2}H\dot{\phi} + U'(\phi) &= 0 & \Longleftrightarrow & \dot{\phi}^2 = \frac{2\Omega_m}{a^3} \\ \dot{\phi}(\dot{\delta} + \frac{3}{2}H\delta) &= -V'(\phi) & \Longleftrightarrow & \delta = -\kappa a^{-1.5} \\ \rho &= (\delta + \frac{1}{2})\dot{\phi}^2 + V(\phi), & & \rho = \Omega_\Lambda - \frac{\Omega_\kappa}{a^{4.5}} + \frac{\Omega_m}{a^3} \\ p &= \frac{\delta}{2}\dot{\phi}^2 - V(\phi), & & p = -\Omega_\Lambda - \frac{1}{2}\frac{\Omega_\kappa}{a^{4.5}} \end{split}$$

matter w = 0D. Cosmological constant w = -1Negative 2D radiation w = 1/2

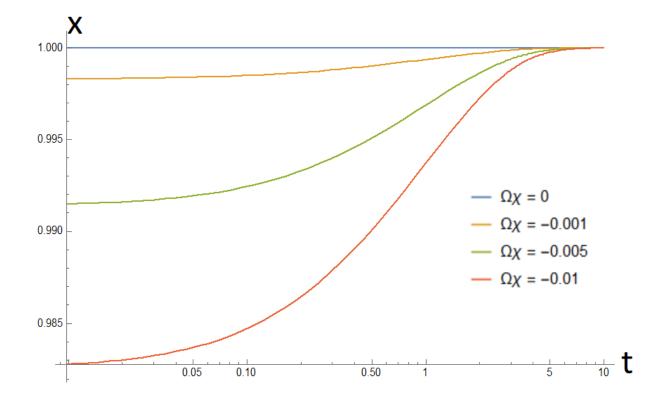
A bouncing LCDM





A dynamical time vs. cosmic time

• This correspondence between dynamical time and the cosmic time could be a solution of the time problem in quantum cosmology.



Exponential potential $U(\phi) = C$, $V(\phi) = \Omega_{\Lambda} e^{-\beta\phi}$

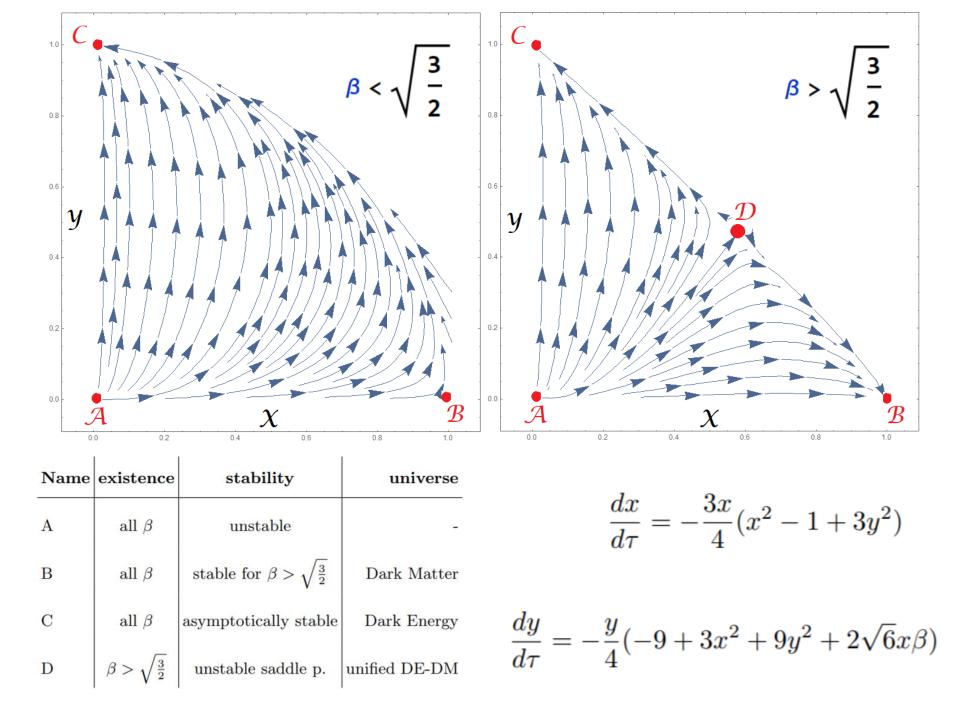
• The scalar field still behaves as dust:

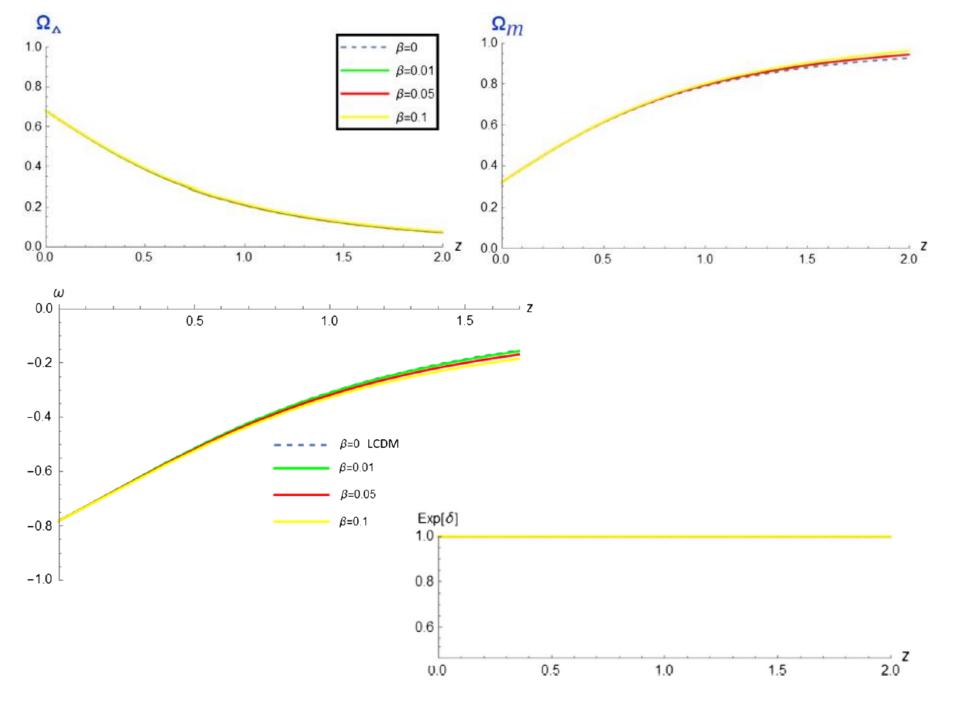
$$\dot{\phi}^2 = \frac{2\Omega_m}{a^3}$$

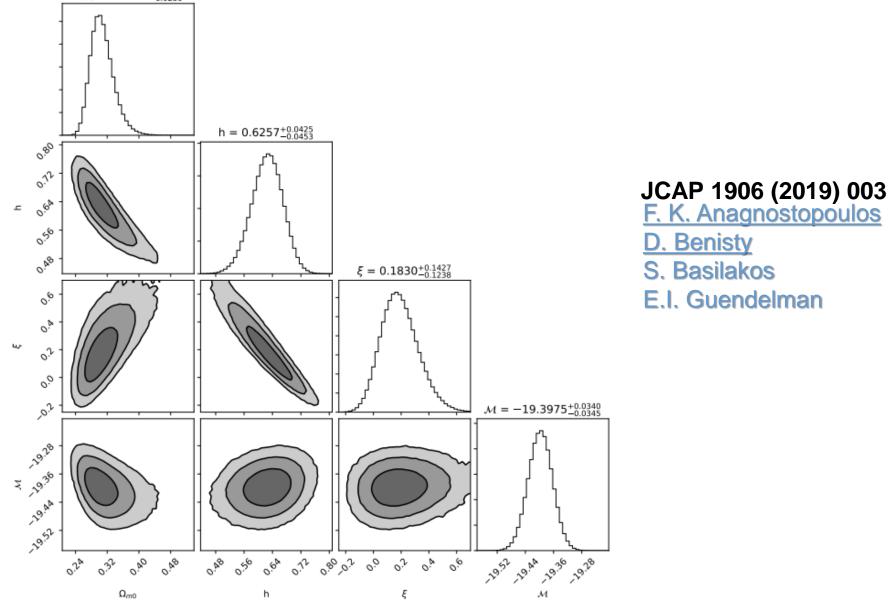
$$(1+2\delta)\frac{\dot{\phi}^2}{2} + V(\phi) = 3H^2$$

• In terms of dimensionless quantities:

$$(1+2\delta)x^2 + y^2 = 1$$
$$x = \frac{\dot{\phi}}{\sqrt{6}H}, \quad y = \frac{\sqrt{V(\phi)}}{\sqrt{3}H}$$







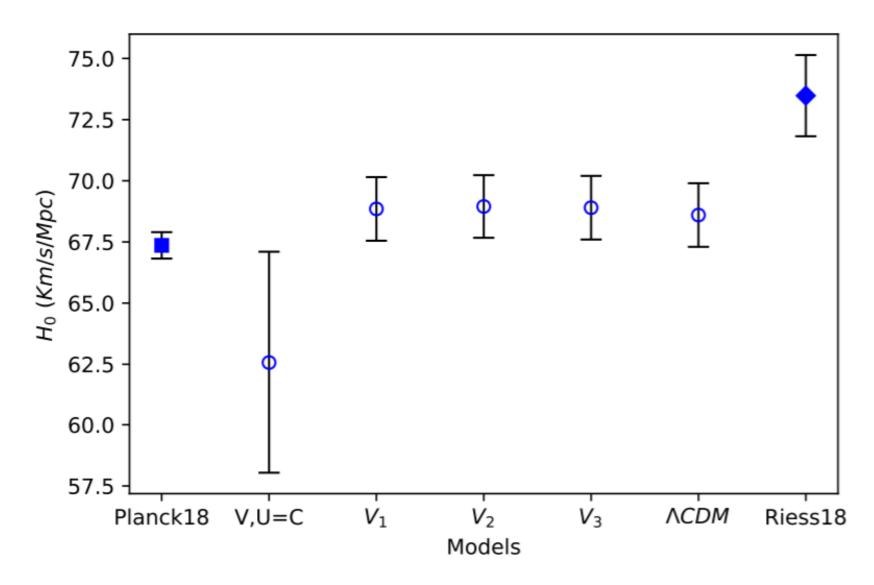
Better then LCDM for late time expansion data

Model	Ω_{m0}	h	α/κ	β	\mathcal{M}	χ^2_{min}
V, Uconst.	$0.305^{+0.032}_{-0.025}$	$0.6896^{+0.0126}_{-0.0124}$	$-0.183^{+0.125}_{-0.144}$	-	$-19.397^{+0.034}_{-0.035}$	84.049
V_1	$0.277^{+0.024}_{-0.023}$	$0.6885_{0.0128}^{0.0130}$	-	$-0.593^{+1.367}_{-1.355}$	$-19.390^{+0.034}_{-0.035}$	88.100
$V_2(cosine)$	0.270 ± 0.015	$0.6895^{+0.0128}_{-0.0127}$	_	1	-19.388 ± 0.035	87.954
V_3	$0.273^{+0.024}_{-0.023}$	$0.6890^{+0.0130}_{-0.0127}$	$1.152^{+1.370}_{-1.352}$	1	-19.389 ± 0.034	87.942
ACDM	$0.281\substack{+0.016\\-0.015}$	0.686 ± 0.013	-	-	-19.403 ± 0.035	85.700

Model	AIC	ΔΑΙϹ	BIC	ΔΒΙϹ	DIC	ΔDIC
V, Uconst	92.470	0.518	102.470	2.955	88.473	0
V_1	96.521	4.569	106.5210	7.006	95.908	7.435
V_2	94.204	2.252	101.770	2.255	93.930	5.457
V_3	96.363	4.411	106.363	6.848	95.805	7.332
ACDM	91.952	0	99.515	0	91.671	3.198

TABLE V. The information criteria values AIC, BIC and DIC for the different potentials and the concordance model along with the corresponding differences $\Delta IC \equiv IC - IC_{min}$.

H0 values



General Consideration of $T^{\mu\nu}_{(\chi)}$

• For a generalizes $T^{\mu\nu}_{(\chi)}$:

$$T^{\mu\nu}_{(\chi)} = -\frac{\lambda_1}{2} \phi^{,\mu} \phi^{,\nu} - \frac{\lambda_2}{2} g^{\mu\nu} \phi^{,\alpha} \phi_{,\alpha} + g^{\mu\nu} U(\phi)$$

With the "density and the pressure": ho

$$p_{(\chi)} = (\lambda_1 + \lambda_2) \frac{\phi^2}{2} + U(\phi),$$
$$p_{(\chi)} = -\lambda_2 \frac{\dot{\phi}^2}{2} - U(\phi).$$

• 7

The general action is again:

$$\mathcal{L} = -\frac{1}{2}R + \chi_{\mu;\nu}T^{\mu\nu}_{(\chi)} - \frac{1}{2}g^{\alpha\beta}\phi_{,\alpha}\phi_{,\beta} - V(\phi)$$

S. Banerjee D. Benisty E.I. Guendelman arXiv:1909.01982

The EoM

- The variation with respect to χ_{μ} : $\dot{\phi} = C_1 a^{-3\lambda_1/2\lambda}$,
- Power Law $a \sim t^{\alpha}$

$$\rho = C_1^2 \frac{(\lambda + 3\alpha(\lambda_1 + 3\lambda))}{2(3\alpha(\lambda_1 - \lambda) + \lambda)} a^{-3\lambda_1/\lambda} + V.$$

• Exponential $a \sim e^{H_0 t}$

$$\rho = C_1^2 \frac{\lambda_1 + 3\lambda}{2(\lambda_1 - \lambda)} a^{-3\lambda_1/\lambda} + V$$

Mon.Not.Roy.Astron.Soc. 431 (2013) 923-929

J.A.S. Lima, S. Basilakos, Joan Sola

The Running Vacuum Model

• From QFT in curved spacetime:

$$\rho_{\Lambda}(H;\nu,\alpha) = \frac{3}{8\pi G} \left(c_0 + \nu H^2 + \frac{2}{3} \alpha H \right) + \mathcal{O}(H^4),$$

• For
$$G = Const$$
: $\rho = \Omega_{\Lambda}^{(0)} + \frac{\Omega_m^{(0)}}{\xi} a^{-3\xi} + \frac{\Omega_r^{(0)}}{\xi'} a^{-4\xi'}$.

$$\xi = \frac{1 - \nu}{1 - \alpha} \equiv 1 - \nu_{eff}, \quad \xi' = \frac{1 - \nu}{1 - \frac{4}{3}\alpha} \equiv 1 - \nu'_{eff}.$$

• Corresponds to DST cosmology with: $\xi = \lambda_1/\lambda$, $\xi' = 1$

Inflation Compactification

Phys. Rev. D 31, 2697 (1985)

Yasunari Tosa

- The metric: $ds^2 = -dt^2 + R(t)^2 dx^2 + r(t)^2 dy^2$
- The volume:

$$V = R^D r^d$$

• For separate equation of states, the compactification mechanism uses:

$$R(t) = V^{\frac{1}{D+d}} \exp[+\frac{1}{D+d}\sqrt{\frac{2Ed(D+d-1)}{D}}\int\frac{dt}{V}]$$
$$E = \frac{1}{2}\dot{V}^2 - \frac{D+d}{D+d-1}\Omega V^2$$
$$r(t) = V^{\frac{1}{D+d}} \exp[-\frac{1}{D+d}\sqrt{\frac{2ED(D+d-1)}{d}}\int\frac{dt}{V}]$$

Phys.Rev. D98 (2018) no.4, 043522 David Benisty, Eduardo Guendelman Inflation Compactification With D.S.T

 $\Omega = \Omega_{\Lambda} + \frac{\Omega_m}{V} + \frac{\Omega_{\kappa}}{V^{3/2}}$

• For constant potentials, the density is:

$$E = \frac{1}{2}\dot{V}^2 + U_{eff}$$

with the appropriate effective potential:

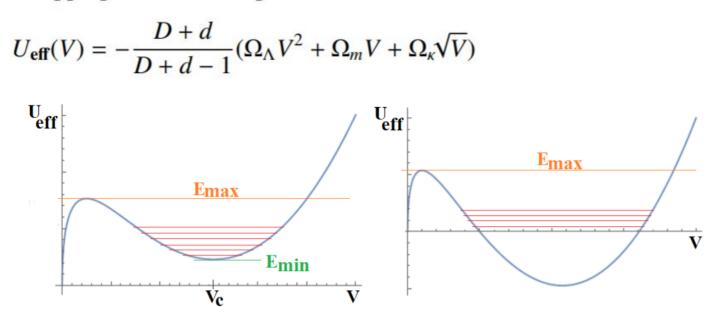
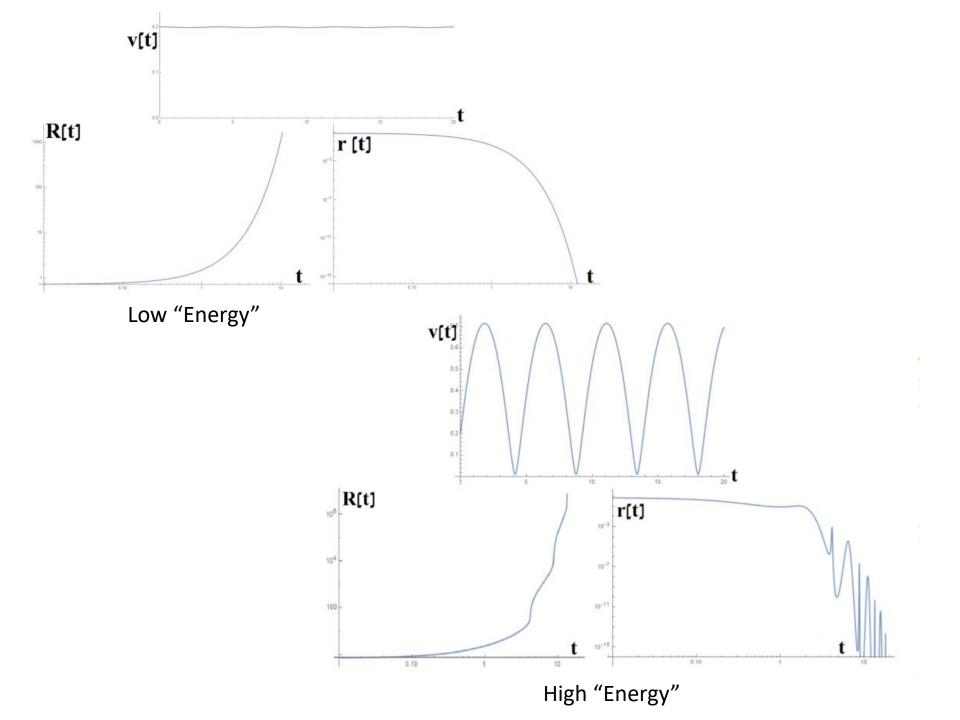


FIG. 1. The effective potential, for two cases, where Ω_{Λ} , $\Omega_{\kappa} < 0$ and $\Omega_m > 0$.



End of inflation compactification, using a step function potential

 For obtaining a partially analytic and more simple solution, lets use a step function:

$$V(\phi) = \frac{\Lambda_{+\infty} - \Lambda_{-\infty}}{2} \mathbf{Sign}(\phi) + \frac{\Lambda_{+\infty} + \Lambda_{-\infty}}{2}.$$

 Λ_\pm are the vales of the potential from right and left.

The variation with respect to the vector field: $\dot{\phi}^2 = \frac{2\Omega_m}{V}$

The variation with respect to the scalar:

$$\frac{2\Omega_m}{V^{\frac{3}{2}}}d(\xi V^{\frac{1}{2}}) = -dV(\phi).$$

where $\xi = \dot{\chi}_0 - 1$

With the solution: $\xi(\phi < 0) = \frac{\kappa_-}{V_{(\phi=0)}^{\frac{1}{2}}}, \qquad \xi(\phi > 0) = \frac{\kappa_+}{V_{(\phi=0)}^{\frac{1}{2}}}.$

The discontinuity condition gives:

$$\kappa_{+} - \kappa_{-} = -\frac{V_{(\phi=0)}^{2}}{2\Omega_{m}}(\Lambda_{+\infty} - \Lambda_{-\infty}).$$

The "energy equation" (EOM with respect to the metric):

$$E = \frac{1}{2}\dot{V}^2 - \frac{D+d}{D+d-1}V^2 \left[\frac{2\Omega_m}{V}\left(\xi + \frac{1}{2}\right) + \frac{\Lambda_{+\infty} - \Lambda_{-\infty}}{2}\mathbf{Sign}(\phi) + \frac{\Lambda_{+\infty} + \Lambda_{-\infty}}{2}\right].$$

• There is no jump of the volume:

$$\frac{1}{2}\Delta \dot{V}^{2} = \frac{D+d}{D+d-1} \left(\frac{2\Omega_{m}}{V_{(\phi=0)}} \Delta \xi + \Lambda_{+\infty} - \Lambda_{-\infty} \right) V_{(\phi=0)}^{2} = 0,$$

This fact gives a pure proof that there is a solution for any potential.

Final Remarks

Dynamical dark energy and dark matter:

- For understanding the nature of the coincidence problem
- Hubble constant tension?

The Dynamical space time Theories – both energy momentum tensor are conserved.

Valid after GW170817!

- Dynamical time has a correspondence to the cosmic time.
- Dynamical DE DM from potentials stable for low couplings values.
- With higher dimensions gives inflation.

