Constraining the interactions in the dark sector with cosmological data

Adrià Gómez-Valent

MG16, DM1 session July 6, 2021

ZUKUNFT SEIT 1386

- Update on coupled dark energy and the *H*₀ tension A. Gómez-Valent, V. Pettorino and L. Amendola. Phys. Rev. D, 101, 123513 (2020) [arXiv:2004.00610]
- Running vacuum against the H₀ and σ₈ tensions
 J. Solà Peracaula, A. Gómez-Valent, J. de Cruz Pérez and C. Moreno-Pulido
 Europhys. Lett., 134, 19001 (2021) [arXiv:2102.12758]

Outline

Coupled quintessence

- The basics. Background dynamics
- P(k) and CMB temperature anisotropies
- Data and statistical analysis
- Results

2 Ricci Running Vacuum Models

- Basic equations
- Results for the RRVM

3 Conclusions

Coupled quintessence

(日) (四) (日) (日) (日)

Lagrangian density for the dark sector:

$$\mathcal{L}_{ ext{dark}} = -\partial_{\mu}\phi\partial^{\mu}\phi - V(\phi) - m(\phi)ar{\psi}\psi + \mathcal{L}_{ ext{kin}}[\psi]$$

æ

イロト 不得下 イヨト イヨト

Lagrangian density for the dark sector:

$$\mathcal{L}_{ ext{dark}} = -\partial_{\mu}\phi\partial^{\mu}\phi - V(\phi) - m(\phi)ar{\psi}\psi + \mathcal{L}_{ ext{kin}}[\psi]$$

Modified conservation equations:

with

$$abla^{\mu}T^{\phi}_{\mu
u} = +Q_{
u}$$
; $abla^{\mu}T^{dm}_{\mu
u} = -Q_{
u}$
 $Q_{
u} = eta\kappa T^{dm}
abla_{
u}\phi$

э

・ 同 ト ・ ヨ ト ・ ヨ ト

Lagrangian density for the dark sector:

$$\mathcal{L}_{ ext{dark}} = -\partial_{\mu}\phi\partial^{\mu}\phi - V(\phi) - m(\phi)ar{\psi}\psi + \mathcal{L}_{ ext{kin}}[\psi]$$

Modified conservation equations:

$$\nabla^{\mu}T^{\phi}_{\mu\nu} = +Q_{\nu} \qquad ; \qquad \nabla^{\mu}T^{dm}_{\mu\nu} = -Q_{\nu}$$

$$Q_{\nu} = \beta \kappa T^{dm} \nabla_{\nu} \phi$$

In a flat FLRW universe:

with

$$\beta \kappa a^2 \rho_{dm} = \phi'' + 2\mathcal{H}\phi' + a^2 \frac{\partial V}{\partial \phi}$$
$$\rho'_{dm} + 3\mathcal{H}\rho_{dm} = -\beta \kappa \rho_{dm}\phi'$$

- ∢ ∃ →

The model is specified once we choose $\beta(\phi)$ and $V(\phi)$.

æ

イロト イヨト イヨト イヨト

The model is specified once we choose $\beta(\phi)$ and $V(\phi)$. In the main analysis of our paper we used:

$$\beta = const. > 0$$
 ; $V(\phi) = V_0 \phi^{-\alpha}$ (with $\alpha > 0$)

By solving the conservation equation for DM one finds:

$$m(\phi) = m^{(0)} e^{eta \kappa (\phi^{(0)} - \phi)}$$

Scaling behavior in the MDE, $\Omega_{\phi} = 2\beta^2/3$ and $q = \frac{1}{2} + \beta^2$.

Equation for the DM density contrast:

$$\delta_{dm}^{\prime\prime} + (\mathcal{H} - \beta \kappa \phi^{\prime}) \delta_{dm}^{\prime} - 4\pi G a^{2} [\rho_{b} \delta_{b} + \rho_{dm} \delta_{dm} (1 + 2\beta^{2})] = 0$$

(日) (四) (日) (日) (日)

Equation for the DM density contrast:

$$\delta_{dm}^{\prime\prime} + (\mathcal{H} - \beta \kappa \phi^{\prime}) \delta_{dm}^{\prime} - 4\pi G a^{2} [\rho_{b} \delta_{b} + \rho_{dm} \delta_{dm} (1 + 2\beta^{2})] = 0$$

If we neglect the contribution of baryons, $\delta_m(a)\sim a^{1+2\beta^2}.$

If we

Equation for the DM density contrast:

$$\delta_{dm}^{\prime\prime} + (\mathcal{H} - \beta \kappa \phi^{\prime}) \delta_{dm}^{\prime} - 4\pi G a^2 [\rho_b \delta_b + \rho_{dm} \delta_{dm} (1 + 2\beta^2)] = 0$$

neglect the contribution of baryons, $\delta_m(a) \sim a^{1+2\beta^2}$.

.∋...>

• The iSW happens earlier than in the uncoupled scenario, in which such effect is only relevant after matter-domination.

- The iSW happens earlier than in the uncoupled scenario, in which such effect is only relevant after matter-domination.
- The coupling affects lensing of CMB by large-scale structure.

- The iSW happens earlier than in the uncoupled scenario, in which such effect is only relevant after matter-domination.
- The coupling affects lensing of CMB by large-scale structure.
- The amplitude is suppressed, because of the decrease of ρ_b/ρ_{dm} at recombination.

- The iSW happens earlier than in the uncoupled scenario, in which such effect is only relevant after matter-domination.
- The coupling affects lensing of CMB by large-scale structure.
- The amplitude is suppressed, because of the decrease of ρ_b/ρ_{dm} at recombination.
- The interaction also shifts the position of the acoustic peaks to larger multipoles due to the decrease of the sound horizon at the baryon-drag epoch, which is caused by the increase of the mass of the DM particles.

Our coupled quintessence model has 9 parameters:

- 6 ACDM parameters $(\omega_{dm}, \omega_b, \tau, n_s, A_s, H_0)$.
- α , β and $\phi_{\textit{ini}}$.

Our coupled quintessence model has 9 parameters:

- 6 ACDM parameters $(\omega_{dm}, \omega_b, \tau, n_s, A_s, H_0)$.
- α , β and ϕ_{ini} .

and three nested models:

- ACDM: $\alpha = \beta = 0$
- Peebles-Ratra model: $\beta = 0$
- Coupled dark energy with flat potential: $\alpha = 0$.

- Planck 2018 TT, TE, EE likelihood (P18); when CMB lensing is also included (P18lens).
- Pantheon+MCT compilation of SNIa.
- Data on BAO from various galaxy surveys.
- Data on $H(z_i)$ from cosmic chronometers.
- SH0ES prior on $H_0 = (74.03 \pm 1.42) \text{ km/s/Mpc}$.
- Angular diameter distances measured with the strong lensed quasars from HOLICOW.
- Redshift space distortions, $f(z_i)\sigma_8(z_i)$.

A. Gómez-Valent (ITP Heidelberg) Const

< 行

∃ ► < ∃ ►

Bayes ratio:

$$\frac{P(\text{CDE}|\mathcal{D})}{P(\Lambda\text{CDM}|\mathcal{D})} = \frac{\mathcal{E}(\mathcal{D}|\text{CDE})}{\mathcal{E}(\mathcal{D}|\Lambda\text{CDM})} \equiv B_{\text{CDE},\Lambda}$$

< ロト < 同ト < ヨト < ヨト

Bayes ratio:

$$\frac{P(\text{CDE}|\mathcal{D})}{P(\Lambda\text{CDM}|\mathcal{D})} = \frac{\mathcal{E}(\mathcal{D}|\text{CDE})}{\mathcal{E}(\mathcal{D}|\Lambda\text{CDM})} \equiv B_{\text{CDE},\Lambda}$$

Bayesian evidence:

$$\mathcal{E}(\mathcal{D}|M_i) = \int \mathcal{L}(\mathcal{D}|\vec{p}^{M_i}, M_i) \pi(\vec{p}^{M_i}) d^n p^{M_i}$$

∃ ► < ∃ ►

Bayes ratio:

$$\frac{P(\text{CDE}|\mathcal{D})}{P(\Lambda\text{CDM}|\mathcal{D})} = \frac{\mathcal{E}(\mathcal{D}|\text{CDE})}{\mathcal{E}(\mathcal{D}|\Lambda\text{CDM})} \equiv B_{\text{CDE},\Lambda}$$

Bayesian evidence:

$$\mathcal{E}(\mathcal{D}|M_i) = \int \mathcal{L}(\mathcal{D}|\vec{p}^{M_i}, M_i) \pi(\vec{p}^{M_i}) d^n p^{M_i}$$

We computed the evidences with the Python code MCEvidence, Heavens et al. [arXiv:1704.03472].

In $B_{i,\Lambda} > 5$	Very strong evidence for model <i>i</i>
$3 < \ln B_{i,\Lambda} \ge 5$	Strong evidence for model <i>i</i>
$1 < \ln B_{i,\Lambda} \ge 3$	Moderate evidence for model <i>i</i>
$-1 < {\sf ln} \; B_{i,\Lambda} \geq 1$	Not conclusive
$-3 < \ln B_{i,\Lambda} \ge -1$	Moderate evidence for model ACDM
$-5 < \ln B_{i,\Lambda} \ge -3$	Strong evidence for model ACDM
In $B_{i,\Lambda} \ge -5$	Very strong evidence for model ACDM

3

イロト イヨト イヨト イヨト

Ξ.

イロト イヨト イヨト イヨト

Parameter	P18	P18+BSC	P18+SH0ES+H0LICOW	P18+BSC+RSD	P18lens+BSC+RSD	P18+BSC+SH0ES+H0LICOW	P18lens+SH0ES+H0LICOW
$\Omega_{dm}^{(0)}h^2$	$0.1207^{+0.0014}_{-0.0013}$	0.1192 ± 0.0008	$0.1172^{+0.0012}_{-0.0014}$	0.1187 ± 0.0008	0.1191 ± 0.0007	0.1185 ± 0.0008	$0.1182^{+0.0011}_{-0.0010}$
$\Omega_{b}^{(0)}h^{2}$	0.02237 ± 0.00015	$0.02242\substack{+0.00010\\-0.00015}$	$0.02262\substack{+0.00016\\-0.00014}$	$0.02253\substack{+0.00010\\-0.00012}$	$0.02253^{+0.00013}_{-0.00011}$	$0.02253^{+0.00011}_{-0.00013}$	$0.02259^{+0.00014}_{-0.00016}$
τ	0.0538 ± 0.0070	$0.0532^{+0.0075}_{-0.0087}$	0.0594 ± 0.0074	0.0501 ± 0.0052	$0.0525^{+0.0052}_{-0.0064}$	$0.0579^{+0.0069}_{-0.0078}$	$0.0637^{+0.0065}_{-0.0096}$
H_0	$67.74^{+0.57}_{-0.66}$	68.41 ± 0.38	$69.43_{-0.53}^{+0.72}$	$68.64_{-0.38}^{+0.30}$	68.45 ± 0.34	$68.79^{+0.35}_{-0.40}$	68.99 ± 0.51
ns	$0.9654^{+0.0035}_{-0.0042}$	0.9690 ± 0.0038	0.9731 ± 0.0042	$0.9701^{+0.0029}_{-0.0033}$	0.9685 ± 0.0034	0.9705 ± 0.0034	0.9713 ± 0.0037
σ_8	0.8164 ± 0.0076	0.8104 ± 0.0076	$0.8121^{+0.0065}_{-0.0080}$	0.8048 ± 0.0052	$0.8073^{+0.0048}_{-0.0056}$	0.8120 ± 0.0074	0.8160 ± 0.0068
α	< 0.50	0.52 ± 0.17	1.32 ± 0.18	$0.67^{+0.11}_{-0.16}$	$0.25^{+0.09}_{-0.20}$	$0.73^{+0.11}_{-0.27}$	$0.33^{+0.19}_{-0.23}$
β	$0.0158^{+0.0067}_{-0.0120}$	$0.0206\substack{+0.0070\\-0.0095}$	$0.0294^{+0.0120}_{-0.0076}$	$0.0151^{+0.0073}_{-0.0083}$	$0.0095^{+0.0030}_{-0.0087}$	$0.0206^{+0.0076}_{-0.0100}$	$0.0197\substack{+0.0094\\-0.0084}$
$\chi^2_{min,{\rm CDE}}-\chi^2_{min,\Lambda}$	-0.02	-0.28	-0.58	-1.56	-0.90	-1.34	-1.46
$\ln B_{\text{CDE},\Lambda}$	-8.05	-9.95	-7.57	-8.33	-7.83	-7.95	-8.75

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - の々で

Effect of CMB lensing

æ

< ∃⇒

What happens if we consider $V = V_0 e^{-\kappa\lambda\phi}$ instead of the Peebles-Ratra potential?

H_0	$67.86\substack{+0.64\\-0.46}$	69.29 ± 0.61	67.67 ± 0.62
σ_8	$0.8090\substack{+0.0110\\-0.0090}$	0.8097 ± 0.0086	0.7994 ± 0.0084
λ	$0.40^{+0.20}_{-0.24}$	< 0.163	$0.54^{+0.24}_{-0.17}$
β	$0.0198\substack{+0.0100\\-0.0120}$	$0.0240^{+0.0150}_{-0.0120}$	$0.0167^{+0.0085}_{-0.0100}$
$\lnB_{\rm CDE,\Lambda}$	-5.88	-6.54	-5.33

Parameter P18+BSC P18+SH0ES+H0LICOW P18lens+BSC+RSD

A. Gómez-Valent (ITP Heidelberg)

Parameter	ΛCDM	Peebles-Ratra	CDE with $\alpha=0$	CDE
$\Omega_{dm}^{(0)}h^2$	0.1188 ± 0.0008	$0.1180\substack{+0.0010\\-0.0009}$	$0.1187\substack{+0.0006\\-0.0008}$	0.1187 ± 0.0008
$\Omega_b^{(0)} h^2$	0.02252 ± 0.00012	0.02257 ± 0.00014	0.02253 ± 0.00011	$0.02253\substack{+0.00010\\-0.00012}$
τ	$0.0508\substack{+0.0048\\-0.0072}$	$0.0532\substack{+0.0063\\-0.0079}$	0.0496 ± 0.0047	0.0501 ± 0.0052
$H_0 \; [{\rm km/s/Mpc}]$	68.50 ± 0.34	$67.68^{+0.61}_{-0.52}$	$68.55_{-0.31}^{+0.38}$	$68.64\substack{+0.30\\-0.38}$
n_s	0.9696 ± 0.0034	0.9719 ± 0.0038	$0.9700\substack{+0.0032\\-0.0037}$	$0.9701\substack{+0.0029\\-0.0033}$
σ_8	0.8033 ± 0.0057	$0.7880\substack{+0.0110\\-0.0097}$	0.8022 ± 0.0054	0.8048 ± 0.0052
α	-	$0.096\substack{+0.038\\-0.071}$	-	$0.67^{+0.11}_{-0.16}$
β	-	-	$0.0040\substack{+0.0012\\-0.0032}$	$0.0151\substack{+0.0073\\-0.0083}$
$\chi^2_{min,i}-\chi^2_{min,\Lambda}$	-	-1.74	-1.02	-1.56
$\ln B_{i,\Lambda}$	-	-1.67	-5.14	-8.33

æ

< 古ど

Ricci Running Vacuum Model

Vacuum energy density:

$$\rho_{\rm vac}(\mathcal{R}) = \frac{3}{8\pi G_N} \left(c_0 + \frac{\nu}{12} \mathcal{R} \right)$$

with

$$\dot{\rho}_{dm} + 3H\rho_{dm} = -\dot{\rho}_{\rm vac}$$
 .

æ

イロト イヨト イヨト イヨト

Vacuum energy density:

$$\rho_{\rm vac}(\mathcal{R}) = \frac{3}{8\pi G_N} \left(c_0 + \frac{\nu}{12} \mathcal{R} \right)$$

with

$$\dot{\rho}_{dm} + 3H\rho_{dm} = -\dot{\rho}_{\rm vac}$$
 .

We can solve the system and obtain:

$$\rho_{dm}(a) = \rho_m^0 a^{-3\xi} - \rho_b^0 a^{-3} \quad ; \quad \rho_{vac}(a) = \rho_{vac}^0 + \left(\frac{1}{\xi} - 1\right) \rho_m^0 \left(a^{-3\xi} - 1\right)$$

where $\xi = 1 - \frac{\nu}{4} + O(\nu^2)$.

æ

イロト 不得 ト イヨト イヨト

20 / 24

3

<ロト < 四ト < 三ト < 三ト

Parameter	ACDM	type I RRVM	type I RRVM _{thr.}	type II RRVM	BD-ACDM
$H_0 (\rm km/s/Mpc)$	$68.75^{+0.41}_{-0.36}$	$68.77^{+0.49}_{-0.48}$	$68.14^{+0.43}_{-0.41}$	$70.93^{+0.93}_{-0.87}$	$71.23^{+1.01}_{-1.02}$
ω _b	$0.02240^{+0.00019}_{-0.00021}$	$0.02238^{+0.00021}_{-0.00023}$	$0.02243^{+0.00019}_{-0.00018}$	$0.02269^{+0.00025}_{-0.00024}$	$0.02267^{+0.00026}_{-0.00023}$
ω_{dm}	$0.11658^{+0.00080}_{-0.00083}$	$0.11661^{+0.00084}_{-0.00085}$	$0.12299^{+0.00197}_{-0.00203}$	$0.11602^{+0.00162}_{-0.00163}$	$0.11601^{+0.00161}_{-0.00157}$
$\nu_{\rm eff}$	-	$-0.00005^{+0.00040}_{-0.00038}$	$0.02089^{+0.00553}_{-0.00593}$	$0.00038^{+0.00041}_{-0.00044}$	-
ϵ_{BD}	-	-	-	-	$-0.00130\pm^{+0.00136}_{-0.00140}$
$\varphi_{\rm ini}$	-	-	-	$0.938^{+0.018}_{-0.024}$	$0.928^{+0.024}_{-0.026}$
φ_0	-	-	-	$0.930^{+0.022}_{-0.029}$	$0.919^{+0.028}_{-0.033}$
$\tau_{\rm reio}$	$0.050^{+0.008}_{-0.007}$	$0.049^{+0.009}_{-0.008}$	$0.058^{+0.008}_{-0.009}$	0.052 ± 0.008	0.052 ± 0.008
n_s	$0.9718^{+0.0035}_{-0.0038}$	0.9714 ± 0.0046	$0.9723^{+0.0040}_{-0.0039}$	$0.9868^{+0.0072}_{-0.0074}$	$0.9859^{+0.0073}_{-0.0072}$
σ_8	0.794 ± 0.007	0.795 ± 0.013	0.770 ± 0.010	$0.794^{+0.013}_{-0.012}$	$0.792^{+0.013}_{-0.012}$
S_8	$0.788^{+0.010}_{-0.011}$	0.789 ± 0.013	0.789 ± 0.011	$0.761^{+0.018}_{-0.017}$	$0.758^{+0.019}_{-0.018}$
r_s (Mpc)	$147.97^{+0.29}_{-0.31}$	$147.94^{+0.35}_{-0.36}$	$147.88^{+0.33}_{-0.29}$	$143.00^{+1.54}_{-1.96}$	$142.24^{+1.99}_{-2.12}$
χ^2_{min}	2302.14	2301.90	2288.82	2296.38	2295.36
ΔDIC	-	-2.36	+10.88	+5.52	+6.25

Baseline $+ H_0$

æ

• We have shown updated constraints on two models with interactions between cold dark matter and the component in charge of the current acceleration of the universe.

- We have shown updated constraints on two models with interactions between cold dark matter and the component in charge of the current acceleration of the universe.
- $\rho_{dm}(z_{dec})$ is very strongly constrained by the CMB data. This limits the ability of these models to alleviate the cosmological tensions.

- We have shown updated constraints on two models with interactions between cold dark matter and the component in charge of the current acceleration of the universe.
- $\rho_{dm}(z_{dec})$ is very strongly constrained by the CMB data. This limits the ability of these models to alleviate the cosmological tensions.
- The mass of the DM particles is restricted to be $m(a_{ini})/m(a=1) 1 \leq O(1)\%$ in the CDE model.

- We have shown updated constraints on two models with interactions between cold dark matter and the component in charge of the current acceleration of the universe.
- $\rho_{dm}(z_{dec})$ is very strongly constrained by the CMB data. This limits the ability of these models to alleviate the cosmological tensions.
- The mass of the DM particles is restricted to be $m(a_{ini})/m(a=1) 1 \lesssim \mathcal{O}(1)\%$ in the CDE model.
- Applying Occam's razor we conclude that ACDM is preferred by the current cosmological data.

• If the interaction in the dark sector is activated at later times, e.g. around $z \sim O(1)$ there can be interesting consequences, as the alleviation of some tensions.

- If the interaction in the dark sector is activated at later times, e.g. around $z \sim O(1)$ there can be interesting consequences, as the alleviation of some tensions.
- It is also curious to see how some regions of parameter space in CDE with a significant late-time DE dynamics and non-negligible interactions with DM give rise to a phenomenology almost indistinguishable from the ACDM.

Thanks for your attention!

-∢ ∃ ▶