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Coupled quintessence
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Lagrangian density for the dark sector:

Ldark = −∂µφ∂µφ− V (φ)−m(φ)ψ̄ψ + Lkin[ψ]

Modified conservation equations:

∇µTφ
µν = +Qν ; ∇µT dm

µν = −Qν
with

Qν = βκT dm∇νφ

In a flat FLRW universe:

βκa2ρdm = φ′′ + 2Hφ′ + a2∂V

∂φ

ρ′dm + 3Hρdm = −βκρdmφ′

A. Gómez-Valent (ITP Heidelberg) Constraints on DM-DE interactions 5 / 24



Lagrangian density for the dark sector:

Ldark = −∂µφ∂µφ− V (φ)−m(φ)ψ̄ψ + Lkin[ψ]

Modified conservation equations:

∇µTφ
µν = +Qν ; ∇µT dm

µν = −Qν
with

Qν = βκT dm∇νφ

In a flat FLRW universe:

βκa2ρdm = φ′′ + 2Hφ′ + a2∂V

∂φ

ρ′dm + 3Hρdm = −βκρdmφ′
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The model is specified once we choose β(φ) and V (φ).

In the main analysis
of our paper we used:

β = const. > 0 ; V (φ) = V0φ
−α (withα > 0)

By solving the conservation equation for DM one finds:

m(φ) = m(0)eβκ(φ(0)−φ)

Scaling behavior in the MDE, Ωφ = 2β2/3 and q = 1
2 + β2.
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Linear perturbations

Equation for the DM density contrast:

δ′′dm + (H− βκφ′)δ′dm − 4πGa2[ρbδb + ρdmδdm(1 + 2β2)] = 0

If we neglect the contribution of baryons, δm(a) ∼ a1+2β2
.

A. Gómez-Valent (ITP Heidelberg) Constraints on DM-DE interactions 7 / 24



Linear perturbations

Equation for the DM density contrast:

δ′′dm + (H− βκφ′)δ′dm − 4πGa2[ρbδb + ρdmδdm(1 + 2β2)] = 0

If we neglect the contribution of baryons, δm(a) ∼ a1+2β2
.
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The iSW happens earlier than in the uncoupled scenario, in which
such effect is only relevant after matter-domination.

The coupling affects lensing of CMB by large-scale structure.
The amplitude is suppressed, because of the decrease of ρb/ρdm at
recombination.
The interaction also shifts the position of the acoustic peaks to larger
multipoles due to the decrease of the sound horizon at the
baryon-drag epoch, which is caused by the increase of the mass of the
DM particles.
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Number of parameters and nested models

Our coupled quintessence model has 9 parameters:

6 ΛCDM parameters (ωdm,ωb,τ ,ns ,As ,H0).

α, β and φini .

and three nested models:

ΛCDM: α = β = 0

Peebles-Ratra model: β = 0

Coupled dark energy with flat potential: α = 0.
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Data

Planck 2018 TT,TE,EE likelihood (P18); when CMB lensing is also
included (P18lens).

Pantheon+MCT compilation of SNIa.

Data on BAO from various galaxy surveys.

Data on H(zi ) from cosmic chronometers.

SH0ES prior on H0 = (74.03± 1.42) km/s/Mpc.

Angular diameter distances measured with the strong lensed quasars
from HOLICOW.

Redshift space distortions, f (zi )σ8(zi ).
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Occam’s razor and model comparison

Bayes ratio:
P(CDE|D)

P(ΛCDM|D)
=
E(D|CDE)

E(D|ΛCDM)
≡ BCDE,Λ

Bayesian evidence:

E(D|Mi ) =

∫
L(D|~pMi ,Mi )π(~pMi )dnpMi

We computed the evidences with the Python code MCEvidence, Heavens
et al. [arXiv:1704.03472].
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Jeffreys’ scale

ln Bi ,Λ > 5 Very strong evidence for model i

3 < ln Bi ,Λ ≥ 5 Strong evidence for model i

1 < ln Bi ,Λ ≥ 3 Moderate evidence for model i

−1 < ln Bi ,Λ ≥ 1 Not conclusive

−3 < ln Bi ,Λ ≥ −1 Moderate evidence for model ΛCDM

−5 < ln Bi ,Λ ≥ −3 Strong evidence for model ΛCDM

ln Bi ,Λ ≥ −5 Very strong evidence for model ΛCDM
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Effect of CMB lensing
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Results with exponential potential

What happens if we consider V = V0e
−κλφ instead of the Peebles-Ratra

potential?

A. Gómez-Valent (ITP Heidelberg) Constraints on DM-DE interactions 16 / 24



Results for the nested models

A. Gómez-Valent (ITP Heidelberg) Constraints on DM-DE interactions 17 / 24



Ricci Running Vacuum Model
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Vacuum energy density:

ρvac(R) =
3

8πGN

(
c0 +

ν

12
R
)

with

ρ̇dm + 3Hρdm = −ρ̇vac .

We can solve the system and obtain:

ρdm(a) = ρ0
ma
−3ξ−ρ0

ba
−3 ; ρvac(a) = ρ0

vac+

(
1

ξ
− 1

)
ρ0
m

(
a−3ξ − 1

)
where ξ = 1− ν

4 +O(ν2).
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A. Gómez-Valent (ITP Heidelberg) Constraints on DM-DE interactions 21 / 24



Conclusions

We have shown updated constraints on two models with interactions
between cold dark matter and the component in charge of the current
acceleration of the universe.

ρdm(zdec) is very strongly constrained by the CMB data. This limits
the ability of these models to alleviate the cosmological tensions.

The mass of the DM particles is restricted to be
m(aini )/m(a = 1)− 1 . O(1)% in the CDE model.

Applying Occam’s razor we conclude that ΛCDM is preferred by the
current cosmological data.
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A. Gómez-Valent (ITP Heidelberg) Constraints on DM-DE interactions 22 / 24



Conclusions

We have shown updated constraints on two models with interactions
between cold dark matter and the component in charge of the current
acceleration of the universe.

ρdm(zdec) is very strongly constrained by the CMB data. This limits
the ability of these models to alleviate the cosmological tensions.

The mass of the DM particles is restricted to be
m(aini )/m(a = 1)− 1 . O(1)% in the CDE model.

Applying Occam’s razor we conclude that ΛCDM is preferred by the
current cosmological data.
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If the interaction in the dark sector is activated at later times, e.g.
around z ∼ O(1) there can be interesting consequences, as the
alleviation of some tensions.

It is also curious to see how some regions of parameter space in CDE
with a significant late-time DE dynamics and non-negligible
interactions with DM give rise to a phenomenology almost
indistinguishable from the ΛCDM.
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Thanks for your attention!
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