# Cluster cosmology: impact of the mass calibration on the $\sigma_8$ tension



in collaboration with Marian Douspis and Nabila Aghanim

# Outline

# Cosmology with Galaxy Clusters

- thermal Sunyaev-Zeldovich effect
- impact of mass calibration
- Characterise the mass bias
  - Results based on
    - Salvati+ A&A 614, A13 (2018)
    - Salvati+ A&A 626, A27 (2019)



# Introduction

# **Galaxy Clusters**



- Largest gravitationally bound structures in the Universe
- Peaks in the cosmic web
- Multi-component systems:
  - Observables at different wavelengths

<u>Dependence on cosmological parameters:</u>  $\sigma_8$ ,  $\Omega_m$ 



Credit: Hirschmann et al. 2014



# **Cluster cosmology**

**Cluster cosmology**: *mass* and *redshift* of clusters





# thermal Sunyaev-Zeldovich effect

Sunyaev and Zeldovich, Astrophys. Space Sci. 7 (1970) 20

## Interaction between CMB photons and hot gas in clusters: Astrophy Inverse Compton Scattering between CMB photons and hot electrons



5 12

# Mass calibration



**Planck Scaling Relations** 





# Mass calibration and cosmology

Cluster number counts:



Mass calibration: largest source of uncertainty in current cluster cosmology

7

(12)

# tSZ Number Counts + Power Spectrum





# tSZ Number Counts + Power Spectrum

#### LCDM

Laura Salvati





| No more tension on $\sigma_8$                                                 |                         |  |  |
|-------------------------------------------------------------------------------|-------------------------|--|--|
| $(1-b) = 0.58 \pm 0.04$                                                       | P15                     |  |  |
| $(1-b) = 0.65 \pm 0.04$<br>$(1-b) = 0.67 \pm 0.04$<br>$(1-b) = 0.63 \pm 0.04$ | LCDM<br>Neutrinos<br>DE |  |  |
| $(1-b) = 0.62 \pm 0.03$                                                       | P18                     |  |  |

## Tension moved to the mass bias ?!?



Salvati+ A&A 614, A13 (2018)

# Mass bias

 $(1-b) \simeq 0.6$  too low!



## Gas fraction to evaluate mass bias



Eckert et al, A&A 621, A40 (2019)



Mass-redshift Parametrisation

$$(1-b)_{\text{var}} = (1-\mathcal{B}) \cdot \left(\frac{M}{M_*}\right)^{\alpha_b} \cdot \left(\frac{1+z}{1+z_*}\right)^{\beta_b}$$

CMB+tSZ probes: constant (1-b)<sub>var</sub> ~ 0.6

11 12



## **Selection effect**



## **16th Marcel Grossmann**

Salvati+ A&A 626, A27 (2019)

# Conclusions

## Mass calibration: largest source of uncertainties in current cluster cosmology



- Improve theoretical modelling: interplay between cosmology and astrophysics
  - Move on from assumptions of self-similarity and HE
- Hydro-dynamical simulations
- Larger multi-wavelength catalogs

Check if there is still room for TENSIONS!

Thank you for your attention



Backup

# tSZ Number Counts + Power Spectrum

## tSZ Number counts

$$n_{i} = \int_{z_{i}}^{z_{i+1}} dz \int d\Omega \frac{dV_{c}}{dz d\Omega} \int_{M_{\min}}^{M_{\max}} dM_{500} \hat{\chi}(z, M_{500}; l, b) \frac{dN(M_{500}, z)}{dM_{500}}$$

$$C_{\ell}^{\text{tSZ}} = C_{\ell}^{\text{1halo}} + C_{\ell}^{\text{2halo}}$$

$$C_{\ell}^{\text{1halo}} = \int_{0}^{z_{\max}} dz \frac{dV_{c}}{dz d\Omega} \int_{M_{\min}}^{M_{\max}} dM \frac{dN(M_{500}, z)}{dM_{500}} |\tilde{y}_{\ell}(M_{500}, z)|^{2} \exp\left(\frac{1}{2}\sigma_{\ln Y^{*}}^{2}\right)|$$

$$C_{\ell}^{\text{2halo}} = \int_{0}^{z_{\max}} dz \frac{dV_{c}}{dz d\Omega} \left[ \int_{M_{\min}}^{M_{\max}} dM \frac{dN(M_{500}, z)}{dM_{500}} |\tilde{y}_{\ell}(M_{500}, z)| B(M_{500}, z) \right]^{2} P(k, z)$$

#### **Mass function**

$$\frac{dN(M_{500}, z)}{dM_{500}} = f(\sigma)\frac{\rho_m(z=0)}{M_{500}}\frac{d\ln\sigma^{-1}}{dM_{500}}$$
$$f(\sigma) = A\left[1 + \left(\frac{\sigma}{b}\right)^{-a}\right]\exp\left(-\frac{c}{\sigma^2}\right)$$

Tinker et al., Astrophys. J. 688 (2008) 709

Selection function Planck 2015 results. XXVII. A&A 594 (2016) A27

## **Universal Pressure Profile**

Arnaud et al., A&A 517 (2010) A92

## **16th Marcel Grossmann**

## **Scaling Relations**

$$E^{\frac{1}{4}}_{\frac{1}{2}}(z) \left[ \frac{D_A^2(z) Y_{500}}{10^{-4} \,\mathrm{Mpc}^2} \right] = \frac{1}{2} Y_* \left[ \frac{h}{0.7} \right]^{-2+\alpha_1} \left[ \frac{(1-b)! M_{500}}{6 \cdot 10^{14} M_{\odot}} \right]^{\alpha_1}$$
$$\theta_{500} = \theta_* \left[ \frac{h}{0.7} \right]^{-2/3} \left[ \frac{(1-b) M_{500}}{3 \cdot 10^{14} M_{\odot}} \right]^{1/3} E^{-2/3}(z) \left[ \frac{D_A(z)}{500 \,\mathrm{Mpc}} \right]^{-1}$$
Planck 2015 results. XXIV. A&A 594 (2016) A24

$$(1-b) = \frac{M_{\text{est}}}{M_{\text{true}}}$$

Mass-redshift Parametrisation

Salvati+ A&A 626, A27 (2019)

$$(1-b)_{\text{var}} = (1-\mathcal{B}) \cdot \left(\frac{M}{M_*}\right)^{\alpha_b} \cdot \left(\frac{1+z}{1+z_*}\right)^{\beta_b}$$







| Flat prior [0.  | 6,1.0]                           |                                  | I                                |               |
|-----------------|----------------------------------|----------------------------------|----------------------------------|---------------|
| $\Omega_m$      | $\sigma_8$                       | $(1-\mathcal{B})$                | $lpha_b$                         | $\beta_b$     |
| $0.330\pm0.038$ | $0.753\substack{+0.026\\-0.031}$ | $0.756\substack{+0.056\\-0.083}$ | $0.005\substack{+0.029\\-0.026}$ | $0.10\pm0.16$ |
|                 |                                  |                                  |                                  |               |

Laura Salvati

## 2. Effect of M-z parametrisation



## **Redshift bins**

|                   | bin 1    | bin 2      | bin 3   | $(1-b)_2$      |
|-------------------|----------|------------|---------|----------------|
|                   | [0, 0.2] | [0.2, 0.5] | [0.5,1] |                |
| <br>CCCP          | 6        | 11         | 1       | $0.78\pm0.092$ |
| PSZ2 cosmo sample | 209      | 200        | 23      |                |

| $(1-b)_1$       | $(1 - b)_2$     | $(1 - b)_3$     |
|-----------------|-----------------|-----------------|
| $0.655\pm0.078$ | $0.775\pm0.092$ | $0.751\pm0.095$ |

Salvati+ A&A 626, A27 (2019)



## **Results from other analyses**



## **16th Marcel Grossmann**

# **Impact of Mass Function**

# Impact of survey area and SR accuracy

# Impact of Mass Function NON NEGLIGIBLE!



Increasing accuracy on cosmological parameters

- Larger survey area: larger cluster sample
- More accurate calibration for SR

Planck results:  $\sigma_{\sigma_8} = 0.03, \ \sigma_{\Omega_m} = 0.03$ 





## **16th Marcel Grossmann**