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The binary problem

• In the motion of extended objects in the Universe around each
other, it has been empirically observed that there is an
equivalence between the gravitational and inertial masses of
the said extended but compact objects.

• From a mathematical standpoint it implies that smoothly
varying observables like angular frequency of the binary
depends, in the early inspiral stage even solely, on the
monopole moments of the source constituting the objects in
the binary.

• Such a relation, observed in the natural world, is known as the
equivalence principle, and holds true as long as the stellar sizes,
compared to the distances between them, is negligible
compared to unity. 3/36



Can the predictions of the equivalence principle, as found through
the various frameworks of general relativity, be found in
Post-Einsteinian theories of gravitation as well? Or is GR the only
theory to satisfy such a principle?
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A naive delta function assumption
for the binary problem in R + α R2 gravity

Data source: "The basic physics of the binary black hole merger GW150914,"

arXiv:1608.01940
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The equivalence principle
over the ages.

• For cavepeople, fall of boulder and fruit at the same rate might
not have caused any surprise. Instinct of gravity inbuilt in all
animals.

• Timeline of the equivalence principle: documented
approximately 1500 years through Philoponus→ Galileo→
Newton→ Einstein models of celestial mechanics.

• General relativity: features built in equivalence principle.

• Loosely grouped as a weak or special version (weak equivalence
principle), and a more strong or general version (strong
equivalence principle).
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General Relativity / Modified theories of gravity
as a black box system
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• Basic statement of GR: The trace reversed Ricci tensor(Einstein
tensor), itself being obtained by contracting the Riemann
tensor, is directly proportional to the classical matter
energy-momentum tensor.

Gμν ≡ Rμν −
1

2
gμν R =

8πG

c4
Tμνm

• However, no such easy relation between the derivatives of the
metric and the energy-momentum tensor; requires a
transformation to obtain a dependent variable from the metric,
such that the transformed variable has a more direct relation
with Tμν.
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Rewriting the f (R) field equations

Given the Einstein tensor follows the covariant conservation law, all
tensor terms that are related to the Einstein tensor, by virtue of the
field equations of f (R) theories of gravity, will therefore be
conserved. Hence, one may rewrite the field equations in an
Einsteinian form as

Gμν =
8π

f′

(︁
Tμνm + Tμνeff

)︁
Tμνeff ≡ ∇μ ∇ν f′ +

gμν

2

(︀
f − R f′

)︀
− gμν gαβ ∇α ∇β f′

3gμν ∇μ ∇ν f′ + f′ R − 2 f = 8π Tm
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The maximally symmetric spacetime
background to construct solutions around

• In a physical sense, a space that is homogeneous and isotropic
everywhere is called a maximally symmetric space-time.

• In a mathematical sense, a maximally symmetric spacetime is a
constant curvature spacetime possessing the maximum
possible number of Killing vectors, which leads to the following
relation between the Riemann tensor and the metric tensor of
such space-times

Rλρσν = k
(︀
gνρgλσ − gσρgνλ

)︀

• Such a space-time need not be flat. 10/36



The contravariant gothic metric
and Hλρσν

In the Landau-Lifshitz formulation of GR, a contravariant metric
density gμν is used as the dynamical variable instead of the usual
metric gμν. One generally obtains a tensor with Riemann symmetry
usually denoted as Hλρσν, and is proportional to the maximally
symmetric space-time.

Hλρσν = gνρgλσ − gσρgνλ

where

gμν =
√︀
−ggμν
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The Einstein tensor rewritten

In the field equations of GR the Einstein tensor can be algebraically
split as a double partial derivative contracted Hλρσν plus a tensor
term that corresponds to a deviation from maximal symmetry tμνLL
(known as the Landau-Lifshitz energy-momentum pseudo-tensor in
the literature), in an appropriate coordinate system or ’gauge’, which
are respectively given as

∂α βHμανβ = 16π (−g)
(︁
Tμνm + tμνLL + tμνboundary

)︁
∂μg

μν = 0
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A modified metric density
as the main variable on a Minkowski/flat background

Based on the fact that f (R) theories of gravity have two frames of
expression in the literature, namely the Jordan and the Einstein
frame, the gothic metric density of such theories cannot be the usual
metric density of GR but a modified one, defined as follows

g̃μν = f′ (R)
√︀
−ggμν

The factor f′ (R) facilitates the alternate conformal expression of the
field equations in the so called Einstein frame in literature. The above
also leads to a transverse (and later traceless for GW calculations)
tensor variable for a quadratic f (R) theory in Berry & Gair 2011 once
linearized.
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Reformulating the field equations once more

Based on the modified gothic metric density redefinition with g̃μν,
one can rewrite the tensor field equations in a form that resembles
the Landau-Lifshitz form of General Relativity, given by

∂α βHαμβν = −16π (−g) f′ (R)
(︁
Tμνm + tμνeff + tμνLL + tμνboundary

)︁
where the forms of Hαμβν and tμνLL remain the same as in GR (with g

replaced by g̃). tμνeff is a non-linear function of products of first
derivatives of f′ (R) and g̃μν, whose exact form becomes illuminating
only after choosing a weak-limit form for the functions f (R) and
f′ (R).
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Choosing a particular form
for f (R) and f′ (R)

• f (R) theories of gravity have a tendency to harbor a massive
scalar field, in contrast to its GR counterpart whose waves are
tensorial in nature and massless. For this reason, a treatment
on a general f (R) theory of gravity is more difficult compared
to choosing a particular polynomial form.

• To keep deviations from GR as less as possible, the quadratic
form can be safely chosen as a low energy limit of a high energy
physics model, given as

f (R) = R +
f′′ (0)

2
R2

f′ (R) = 1 + f′′ (0) R
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The Post Newtonian Sequence
and an older representation of the trace reversed metric tensor
in GW literature.

The post Newtonian sequence of solutions for gμν is a standard one
and involves definition of a perturbed tensor potential hμν obeying
the Lorenz gauge condition, given respectively as

hμν = ημν − gμν

∂μh
μν = 0

leading to the following wave equation for hμν with standard
solutions

�hμν = −16π (−g)Λμν
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Defining a scalar density
out of the usual Ricci scalar

• Since there is the Ricci scalar manifesting as a scalar field, one
needs to define a dynamical variable that propagates on a Ricci
flat background, and has a ’proper’ scaling relationship with the
trace of the classical energy-momentum tensor (which may
comprise of a pair of slowly spinning fluids, gravitational mass
monopoles, or a combination of both).

• One may choose to structure the trace of the field equations in
a manner that connects the d’Alembert operated scalar density,
say�R, to the trace of Tμνm with an overall (−g) factor. Such a
redefinition was found to be as follows

R = (−g) R
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Perturbing the new gothic metric density

• In order to obtain a PN sequence, the modified gothic metric
density needs to be perturbed about a Minkowski/flat
background, which can then be expanded as multipolar
integrals of a (different from GR) EM pseudo-tensor.

• Similarly, a gauge/coordinate needs to be chosen on which to
project the components of a perturbed metric density. That will
be the Lorenz gauge.

The above conditions are mathematically defined as

h̃μν = ημν − g̃μν

h̃μν
, ν
= 0
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Tensor field equations rewritten
with h̃μν andR

The tensor equations that needs to be solved for can now be
expressed as follows

�h̃μν = −16π Λ̃μν

Λ̃μν = (−g)
(︁
Tμνm + tμνLL + tμνH + tμνeff

)︁
tμνeff = −

3 f′′ (0)

(−g)
R Tμνm −

f′′ (0)

64π (−g)2
[︀
R, ρ h̃, ρ ημν +

− 2 h̃,(μ R, ν) − 4 (R)2 ημν + Eμν
]︁

where Eμν , containing products of first derivatives of h̃μν andR
appear higher at the PN order under the transformation s = ε t.
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Scalar field equations rewritten
with Tm andR

The trace of the field equations, after ignoring total derivatives as
boundary terms, reduces to the following

�R + γ2R = −8π (−g) γ2
[︂
Tm − f′′ (0)

{︂ 2

(−g)
TmR

−
R2

4π (−g)2

}︃]︃
+ O

(︃
[f′′ (0)]2

(−g)3 (length)4

)︃
γ2 ≡ −

p
−g

3 f′′ (0)

Thus the dynamics of the Ricci scalar densityR is independent of the
dynamics of h̃μν, and in a way, independent of Tm, the trace of the
classical matter EM tensor as well, as will be seen next. 20/36



Modelling the Energy-Momentum tensor of
extended objects

• Usual Post-Newtonian approximation assumes weak field,
external and internal space-time wise.

• In GR, BH forms before point particle is reached. Density /
compactness of stars increase to maximal neutron star
situations before themass-radius ratio becomes constant for all
times.

• If a choice of coordinate system can be made where both mass
and radius scale in the same manner, and is related to the PN
parameter ε, one can mathematically take care of the strong
internal fields inside stars and can proceed to apply the usual
PN formalism.
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Body zone coordinate

Figure: A single star, as measured in two different coordinate frames. In black, lengths as

measured by an observer at asymptotic infinity. In blue: as measured in scaled coordinate.

Black outer sphere: boundary of patched coordinate systems.
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The Newtonian dynamical time

Figure: Constant ′s′ curves which form hyperbolas. If for ε = 0.1 the system completes

one orbit after some dynamical time ′s′1 , then it would have completed its first orbit in

roughly the same dynamical time for ε = 0.01. Implying the phase of the system along the

s = constant curve remains approximately the same as time ′t′ varies.
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Comoving frames

• In order to patch together two space-times (corresponding to
each compact body and their neighborhoods) into a single
asymptotically Minkowskian spacetime, two co-moving (but
non-rotating with respect to the asymptotic observer)
coordinate systems centered around the two compact objects
are defined.

• Mathematically, this can be achieved by defining two
Fermi-Normal coordinates along the world-line of the two
compact objects. At the leading order, the two co-moving
volumes can safely be approximated as spheres.
• The spherical co-moving zone boundary is not well motivated

for higher than 2.5 PN calculations in GR due to the Lorentz
contraction of a moving sphere leading to spurious multipole
moments. 24/36



Comoving frames
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Defining a measure of the four-momentum

The 4-momentum in the body zone of the Lth compact object is
mathematically defined as (Futamase & Itoh 2007, Giulini 2018)

PμL (s) = ε2
∫︁
BL

d3XLΛsμ, (1)

Λμν = Tμνm + tμνLL (2)

Given a post Newtonian sequence of solutions for gμν about ε → 0
can be found, the pseudo-tensor Λμν can be expanded in a series
over ε, leading to a quasi-conserved 4-momentum at each PN order.
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Evolution of the 4-momentum

To obtain the equations of motion, one takes the dynamical time (′s′)
derivative of the 4-momentum, and uses the conservation equation
on Λμν in order to obtain the 4-force on the Lth body as vector
surface integrals of the net EM pseudo-tensor over the sphere which
is the outer boundary of the body zone L (Futamase & Itoh 2007)

dPμL
ds

= −ε−4
∮︁
∂BL

dSk Λk μ + ε−4 vkL

∮︁
∂BL

dSk Λsμ (3)

dSk being an infinitesimal normal 1-form (or an infinitesimal covariant
normal vector) on the spherical outer boundary of the body zone.
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Momentum-velocity relation
in general

The 3-momentum vs 3-velocity relationship can be identified from
the 4-momenta, and is given by (Futamase & Itoh 2007)

PiL = PsL v
i
L + Qi

L + O
(︀
ε2
)︀

(4)

Qi
L = ε−4

∮︁
∂BL

dSk
(︁
Λs k − vkL Λ

s s
)︁
XiL (5)

which reduces to the standard momentum-velocity relationship of
classical mechanics at the leading order if PsL is identified as the
gravitational mass contained in the body zone L.
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3-velocity evolution
or the 3-acceleration

The momentum-velocity relationship at the leading order can be
substituted in the spatial part of the 4-momentum to obtain the
acceleration, or the equations of motion, of the Lth compact object

PsL
dviL
ds

= −ε−4
∮︁
∂BL

dSk Λk i + ε−4 vkL

∮︁
∂BL

dSk Λs i

+ε−4 viL

(︂∮︁
∂BL

dSk Λk s − vkL

∮︁
∂BL

dSk Λs s
)︂

−
dQi

L

ds
(6)

The form of Λμν at each PN order (constructed from PN solution hμν

at an earlier order) determines the equations of motion at the
corresponding order. 29/36



The one and half PN equations of motion

Using the surface integral approach to obtain the force on the first
body zone using the surface intgral approach, the 1.5 post Newtonian
equations were found to be as follows

M1
dvi1
ds

= FiNewton + ε2 Fi1PN,GR

+ ε3
2π

9

M1M2

r1 2

(︂ 1

r1 2
+ γ

)︂
e−γ r1 2 ni

where ni is the unit vector pointing from the COM of the first body
zone to the COM of the second body zone, and the distance between
the COM of the two bodies or the orbital separation is r1 2.
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Velocity profile

It is interesting to note how the velocities depend on the distance r1 2.
After cancelingM1 from both sides one can rewrite the equations of
motion till 1.5 PN (ignoring the 1PN force) as the following

ni vi1 (r1 2) = ±

√︃
2

r1 2

√︀
1 − e−γ r1 2 + C γ r1 2
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A new treatment of f (R) theories of gravity

• For a Landau Lifshitz like treatment of the field equations of
f (R) theories of gravity, a modified approach to defining a
gothic metric density was formulated utilizing a conformal
symmetry of metric f (R) theories of gravity. The properties are
connected to the dual frame expression (Einstein and Jordan) of
f (R) theories of gravity and the separation of the gravitational
wave part of the space-time from the non-radiating part of the
space-time.

• A scalar density, acting as the dynamical variable for the massive
scalar field of f (R) theories of gravity was defined, whose
dynamics was related to the classical matter energy-momentum
scalar in the same manner the perturbed modified metric
density’s dynamics relates to the classical EM tensor. 33/36



Post Newtonian equations of motion of a binary
till 1.5 PN in quadratic f (R) theories of gravity

• Proper definition of tensor and scalar dynamical variables allow
one to express the net energy-momentum tensor sourcing the
dynamics of the tensor+scalar system as a polynomial series on
the combined deviation from GR parameter and determimant
of the metric f′′(0)p

−g . This particular series of the net EM
pseudo-tensor allows one to figure out which term/s become
dominant at which PN order just by counting the power on
f′′(0)p
−g in the same.

• Most of the highly non-linear terms are pushed to higher than
first PN order. At the next-to-leading order from the Newtonian
solution, the non-Einsteinian force is composed of an inverse
length density γ which is a universal constant in f (R) theories. 34/36



An extra misbehaving force
but only at large distances

• The extra force signaling a deviation from GR appearing at the
1.5 PN order is starkly different at large distances from any force
that might result from consequences of Newtonian or
Einsteinian gravity. Unlike the former, the new force can be
repulsive at large distances from another object (which
produces an external gravitational field).

• Asymptotic flatness is maintained as the total gravitational force
at large distances become smaller in magnitude. However, the
net gravitational force cancels out to zero at large distances,
leading to a flat velocity profile.
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Slightly wrong end result but correct tools in arXiv:2103.04627
Thank you for your attention...
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