# Early and not so early dark energy. What do cosmological observations tell us about them?

### Adrià Gómez-Valent

MG16, CM3 session July 5, 2021



ZUKUNFT SEIT 1386



• Constraints on the fraction of early dark energy in the pre- and post-recombination epochs. [arXiv:2107.XXXX]

in collaboration with:

L. Amendola, V. Pettorino, C. Wetterich and Z. Zheng

2 Early dark energy in Quintessence models with scaling solutions

3 Scaling EDE: a parametrized approach

4 Reconstruction of EDE: binned  $\rho_{de}(z)$ 

### 5 Conclusions

- Poulin, Smith, Grin, Karwal and Kamionkowski [arXiv:1806.10608]
- Poulin, Smith, Karwal and Kamionkowski [arXiv:1811.04083]

- Poulin, Smith, Grin, Karwal and Kamionkowski [arXiv:1806.10608]
- Poulin, Smith, Karwal and Kamionkowski [arXiv:1811.04083]

Scalar field potential: 
$$V(\phi) \propto \left[1-\cos\left(rac{\phi}{f}
ight)
ight]^n$$



- Poulin, Smith, Grin, Karwal and Kamionkowski [arXiv:1806.10608]
- Poulin, Smith, Karwal and Kamionkowski [arXiv:1811.04083]

Scalar field potential: 
$$V(\phi) \propto \left[1-\cos\left(rac{\phi}{ar{f}}
ight)
ight]^n$$



Klein-Gordon equation:  $\ddot{\phi} + 3H\dot{\phi} + \frac{\partial V}{\partial \phi} = 0$ 





3



3



2

Effective fluid description:

$$ho_{\phi}(a) = rac{2
ho_{\phi}(a_c)}{\left(rac{a}{a_c}
ight)^{rac{6n}{n+1}}+1} \qquad ; \qquad w_{\phi}(a) = rac{2n}{n+1}rac{1}{\left(rac{a_c}{a}
ight)^{rac{6n}{n+1}}+1}-1$$

with  $\hat{c}_s^2 = 1$  when  $a \ll a_c$  and  $\hat{c}_s^2(a, k) = \frac{2a^2(n+1)\beta_0 a^{-3}\left(\frac{n-1}{n+1}\right) + k^2}{2a^2(n-1)\beta_0 a^{-3}\left(\frac{n-1}{n+1}\right) + k^2}$  for  $a \gg a_c$ .



э



э

-



э

э.

< 行



э

< E.

< 行



э

< E

< 行

### Increase of the $\sigma_8/S_8$ tension

#### Results from Poulin et al. [arXiv:1811.04083] Data set: Planck 2018+SNIa+BAO+ $H_0$

| Parameter          | ΛCDM                          | n = 2                                    | n = 3                               |
|--------------------|-------------------------------|------------------------------------------|-------------------------------------|
| 100 $\theta_s$     | $1.04198~(1.04213)\pm 0.0003$ | $1.04175 (1.0414)^{+0.00046}_{-0.00064}$ | $1.04138~(1.0414)\pm 0.0004$        |
| $100 \omega_b$     | $2.238(2.239) \pm 0.014$      | $2.244 (2.228)^{+0.019}_{-0.022}$        | $2.255~(0.258)\pm0.022$             |
| $\omega_{ m cdm}$  | $0.1179~(0.1177)\pm 0.0012$   | $0.1248 \ (0.1281)^{+0.003}_{-0.0041}$   | $0.1272 \ (0.1299)_{\pm} 0.0045$    |
| $10^{9}A_{s}$      | $2.176(2.14) \pm 0.051$       | $2.185~(2.230) \pm 0.056$                | $2.176~(2.177) \pm 0.054$           |
| $n_s$              | $0.9686~(0.9687)\pm0.0044$    | $0.9768 \ (0.9828)^{+0.0065}_{-0.0072}$  | $0.9812 \ (0.9880) \pm 0.0080$      |
| $\tau_{\rm reio}$  | $0.075~(0.068)\pm 0.013$      | $0.075~(0.083)\pm0.013$                  | $0.068~(0.068)\pm 0.013$            |
| $\log_{10}(a_c)$   | -                             | $-4.136 (-3.728)^{+0.57}_{-0.013}$       | $-3.737 (-3.696)^{+0.110}_{-0.094}$ |
| $f_{\rm EDE}(a_c)$ | -                             | $0.028 (0.044)^{+0.011}_{-0.016}$        | $0.050 \ (0.058)^{+0.024}_{-0.019}$ |
| $r_s(z_{ m rec})$  | $145.05~(145.1) \pm 0.26$     | $141.4 (139.8)^{+2}_{-1.5}$              | $140.3 (138.9)^{+1.9}_{-2.3}$       |
| $S_8$              | $0.824~(0.814)\pm 0.012$      | $0.826~(0.836) \pm 0.014$                | $0.838~(0.842)\pm 0.015$            |
| $H_0$              | $68.18~(68.33) \pm 0.54$      | $70.3~(71.1) \pm 1.2$                    | $70.6~(71.6) \pm 1.3$               |

▶ ∢ ∃ ▶

### Increase of the $\sigma_8/S_8$ tension

# Results from Poulin et al. [arXiv:1811.04083] Data set: Planck 2018+SNIa+BAO+ $H_0$

| Parameter          | ΛCDM                         | n = 2                                      | n = 3                               |
|--------------------|------------------------------|--------------------------------------------|-------------------------------------|
| 100 $\theta_s$     | $1.04198~(1.04213)\pm0.0003$ | $1.04175 \ (1.0414)^{+0.00046}_{-0.00064}$ | $1.04138~(1.0414)\pm 0.0004$        |
| 100 $\omega_b$     | $2.238~(2.239)\pm 0.014$     | $2.244 (2.228)^{+0.019}_{-0.022}$          | $2.255~(0.258)\pm0.022$             |
| $\omega_{\rm cdm}$ | $0.1179~(0.1177)\pm 0.0012$  | $0.1248 \ (0.1281)^{+0.003}_{-0.0041}$     | $0.1272 \ (0.1299)_{\pm} 0.0045$    |
| $10^{9}A_{s}$      | $2.176(2.14) \pm 0.051$      | $2.185~(2.230) \pm 0.056$                  | $2.176~(2.177) \pm 0.054$           |
| $n_s$              | $0.9686~(0.9687)\pm0.0044$   | $0.9768 \ (0.9828)^{+0.0065}_{-0.0072}$    | $0.9812~(0.9880)\pm 0.0080$         |
| $\tau_{\rm reio}$  | $0.075~(0.068) \pm 0.013$    | $0.075~(0.083)\pm0.013$                    | $0.068~(0.068)\pm 0.013$            |
| $\log_{10}(a_c)$   | -                            | $-4.136 (-3.728)^{+0.57}_{-0.013}$         | $-3.737 (-3.696)^{+0.110}_{-0.094}$ |
| $f_{\rm EDE}(a_c)$ | -                            | $0.028 \ (0.044)^{+0.011}_{-0.016}$        | $0.050 \ (0.058)^{+0.024}_{-0.019}$ |
| $r_s(z_{\rm rec})$ | $145.05(145.1) \pm 0.26$     | $141.4 (139.8)^{+2}_{-1.5}$                | $140.3 (138.9)^{+1.9}_{-2.3}$       |
| $S_8$              | $0.824  0.814  \pm 0.012$    | $0.826 (0.836) \pm 0.014$                  | $0.838(0.842) \pm 0.015$            |
| $H_0$              | $68.18(68.33) \pm 0.54$      | $70.3(71.1) \pm 1.2$                       | $70.6\ (71.6) \pm 1.3$              |

Enhancement of the amount of LSS in the universe!

- J.C. Hill et al. [arXiv:2003.07355]
- M.M. Ivanov et al. [arXiv:2006.11235]

#### • Can other shapes of $\Omega_{de}(z)$ help to solve the tensions?

- (日)

3 1 4 3 1

- Can other shapes of  $\Omega_{de}(z)$  help to solve the tensions?
- Can EDE in the post-recombination epoch mitigate the  $S_8/\sigma_8$  tension?

- ∢ ∃ →

- Can other shapes of  $\Omega_{de}(z)$  help to solve the tensions?
- Can EDE in the post-recombination epoch mitigate the  $S_8/\sigma_8$  tension?
- What if we consider both, EDE and a late-time dynamical DE?

- Can other shapes of  $\Omega_{de}(z)$  help to solve the tensions?
- Can EDE in the post-recombination epoch mitigate the  $S_8/\sigma_8$  tension?
- What if we consider both, EDE and a late-time dynamical DE?
- Is EDE able to loosen the "SH0ES-Planck" tension if we formulate it in terms of the absolute magnitude of SNIa measured in the first steps of the cosmic distance ladder instead of  $H_0$ ?

- Can other shapes of  $\Omega_{de}(z)$  help to solve the tensions?
- Can EDE in the post-recombination epoch mitigate the  $S_8/\sigma_8$  tension?
- What if we consider both, EDE and a late-time dynamical DE?
- Is EDE able to loosen the "SH0ES-Planck" tension if we formulate it in terms of the absolute magnitude of SNIa measured in the first steps of the cosmic distance ladder instead of  $H_0$ ?
- Does EDE also lead to large values of  $\sigma_{12}$  and  $S_{12}$  with respect to the  $\Lambda \text{CDM}$ ?

### EDE in Quintessence models with scaling solutions

• EDE models are not new.

- EDE models are not new.
- For instance, EDE in quintessence with an exponential potential,  $V(\phi) = V_0 e^{-\lambda \kappa \phi}$  exhibits scaling solutions with

$$\Omega_{\phi}=rac{3}{\lambda^2}(1+w)$$
 ;  $w_{\phi}=w$ 

with w the EoS parameter of the dominant fluid, and  $\hat{c}_s^2 = 1$ .

- EDE models are not new.
- For instance, EDE in quintessence with an exponential potential,  $V(\phi) = V_0 e^{-\lambda \kappa \phi}$  exhibits scaling solutions with

$$\Omega_{\phi}=rac{3}{\lambda^2}(1+w)$$
 ;  $w_{\phi}=w$ 

with w the EoS parameter of the dominant fluid, and  $\hat{c}_s^2 = 1$ . References:

- Wetterich, Nucl. Phys. B, 302, 668 (1988).
- Copeland, Liddle and Wands (1997) [arXiv:gr-qc/9711068]

### The EDEp parametrization

EDE density:

$$\rho_{de}(z) = \rho_1(1+z)^4 + \rho_2(1+z)^3 + \rho_3(1+z)^{3(1+w)}$$

æ

### The EDEp parametrization

EDE density:

$$\rho_{de}(z) = \rho_1(1+z)^4 + \rho_2(1+z)^3 + \rho_3(1+z)^{3(1+w)}$$

EDE pressure:

$$p_{de}(z) = \frac{\rho_1}{3}(1+z)^4 + w\rho_3(1+z)^{3(1+w)}$$

æ

### The EDEp parametrization

EDE density:

$$\rho_{de}(z) = \rho_1(1+z)^4 + \rho_2(1+z)^3 + \rho_3(1+z)^{3(1+w)}$$

EDE pressure:

$$p_{de}(z) = \frac{\rho_1}{3}(1+z)^4 + w\rho_3(1+z)^{3(1+w)}$$

Useful to define:

$$\rho_1 = \chi_1 \Omega_{r,*}^{(0)} \rho_c^{(0)} ; \qquad \rho_2 = \chi_2 \Omega_{m,*}^{(0)} \rho_c^{(0)} ,$$

and

$$\Omega_{\textit{ede}}^{\rm RD} = \frac{\chi_1}{1 + \chi_1}; \qquad \Omega_{\textit{ede}}^{\rm MD} = \frac{\chi_2}{1 + \chi_2}$$

æ

∃ ► < ∃ ►</p>

< A<sup>™</sup>

### $\mathsf{EDEp}^{\mathrm{MD}}$ and $\mathsf{EDEp}^{\mathrm{MD,z_{\mathrm{thr}}}}$ parametrizations

 $\mathsf{EDEp}^{\mathrm{MD}}$  :

$$\rho_{de}(z) = \rho_2(1+z)^3 + \rho_3(1+z)^{3(1+w)}$$

 $\mathsf{EDEp}^{\mathrm{MD},\mathrm{z_{thr}}}$  :

$$\rho_{de}(z) = \rho_2(1+z)^3 \theta(z_{thr}-z) + \rho_3(1+z)^{3(1+w)}$$



æ

< □ > < 同 > < 回 > < 回 > < 回 >

Quintessence energy density and pressure:

$$ho_\phi=rac{\dot{\phi}^2}{2}+V$$
 ;  $p_\phi=rac{\dot{\phi}^2}{2}-V$  .

Image: Image:

∃ ► < ∃ ►

Quintessence energy density and pressure:

$$egin{aligned} &
ho_{\phi}=rac{\dot{\phi}^2}{2}+V & ; & p_{\phi}=rac{\dot{\phi}^2}{2}-V\,. \ &\dot{\phi}=\sqrt{
ho_{\phi}+p_{\phi}} & ; & V(a)=rac{1}{2}\left[
ho_{\phi}(a)-p_{\phi}(a)
ight] \end{aligned}$$

æ

Quintessence energy density and pressure:

$$egin{aligned} &
ho_{\phi}=rac{\dot{\phi}^2}{2}+V & ; & p_{\phi}=rac{\dot{\phi}^2}{2}-V \,. \ &\dot{\phi}=\sqrt{
ho_{\phi}+
ho_{\phi}} & ; & V(a)=rac{1}{2}\left[
ho_{\phi}(a)-
ho_{\phi}(a)
ight] \end{aligned}$$

In the RDE:

$$V_{RD}(\phi) = \frac{\chi_1}{3} \rho_r(a_{ini}) \exp\left[-\sqrt{32\pi G\left(1+\frac{1}{\chi_1}\right)} \left(\phi-\phi_{ini}\right)\right]$$

æ

- *Planck* 2018 TT,TE,EE data [CMBpol]; also considering the CMB lensing [CMBpolens].
- Pantheon SNIa compilation.
- The SH0ES prior on the absolute magnitude of SNIa,  $M = -19.2191 \pm 0.0405$ .
- BAO data from various galaxy surveys.
- Data from redshift-space distortions.
- Weak lensing data from KiDS+VIKING-450 and DES-Y1,  $S_8 = 0.762^{+0.025}_{-0.024}$ .

| Parameter                                  | ΛCDM                             | wCDM                                   | EDEp                                | $EDEp^{MD}$                         |
|--------------------------------------------|----------------------------------|----------------------------------------|-------------------------------------|-------------------------------------|
| $\omega_b$                                 | $0.02239^{+0.00014}_{-0.00015}$  | $0.02237\substack{+0.00016\\-0.00015}$ | $0.02238^{+0.00017}_{-0.00016}$     | $0.02234^{+0.00015}_{-0.00016}$     |
| $\omega_{cdm}$                             | $0.1199^{+0.0014}_{-0.0013}$     | $0.1204 \pm 0.0014$                    | $0.1218^{+0.0016}_{-0.0015}$        | $0.1208^{+0.0014}_{-0.0015}$        |
| au                                         | $0.055^{+0.007}_{-0.008}$        | $0.054 \pm 0.008$                      | $0.054 \pm 0.008$                   | $0.053\substack{+0.007\\-0.008}$    |
| $n_s$                                      | $0.9659 \pm 0.0044$              | $0.9646\substack{+0.0044\\-0.0045}$    | $0.9642\substack{+0.0044\\-0.0045}$ | $0.9642\substack{+0.0043\\-0.0046}$ |
| $H_0 \; [\rm km/s/Mpc]$                    | $67.60^{+0.59}_{-0.61}$          | $68.55^{+1.12}_{-1.10}$                | $68.71 \pm 1.16$                    | $68.61^{+1.09}_{-1.16}$             |
| $\sigma_8$                                 | $0.811\substack{+0.007\\-0.008}$ | $0.823 \pm 0.014$                      | $0.817\substack{+0.014\\-0.015}$    | $0.818\substack{+0.015\\-0.014}$    |
| $r_d \; [{ m Mpc}]$                        | $147.02^{+0.28}_{-0.32}$         | $146.92\pm0.30$                        | $146.18^{+0.66}_{-0.43}$            | $146.75_{-0.30}^{+0.36}$            |
| w                                          | -1                               | $-1.039^{+0.035}_{-0.039}$             | $-1.050^{+0.041}_{-0.040}$          | $-1.053^{+0.038}_{-0.042}$          |
| $\Omega_{ede}^{ m RD}\left(\% ight)$       | 0                                | 0                                      | < 0.91  (< 2.08)                    | 0                                   |
| $\Omega_{ede}^{\mathrm{MD}}\left(\% ight)$ | 0                                | 0                                      | < 0.27  (< 0.69)                    | < 0.29  (< 0.69)                    |

æ

| Parameter                                  | ΛCDM                                   | w CDM                                  | EDEp                                   |
|--------------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|
| $\omega_b$                                 | $0.02257\substack{+0.00015\\-0.00014}$ | $0.02241\substack{+0.00014\\-0.00016}$ | $0.02245\substack{+0.00015\\-0.00019}$ |
| $\omega_{cdm}$                             | $0.1179 \pm 0.0012$                    | $0.1200 \pm 0.0015$                    | $0.1212 \pm 0.0016$                    |
| au                                         | $0.057\substack{+0.007 \\ -0.008}$     | $0.054 \pm 0.008$                      | $0.055\pm0.008$                        |
| $n_s$                                      | $0.9709 \pm 0.0044$                    | $0.9658\substack{+0.0044\\-0.0047}$    | $0.9659\substack{+0.0045\\-0.0044}$    |
| $H_0 \; [{\rm km/s/Mpc}]$                  | $68.56\substack{+0.56\\-0.54}$         | $70.55_{-0.88}^{+0.86}$                | $70.63\substack{+0.86 \\ -0.82}$       |
| $\sigma_8$                                 | $0.811\substack{+0.007\\-0.008}$       | $0.838 \pm 0.014$                      | $0.830\substack{+0.014\\-0.013}$       |
| $r_d \; [{ m Mpc}]$                        | $147.36\substack{+0.28\\-0.29}$        | $146.98\substack{+0.33\\-0.30}$        | $146.21\substack{+0.73\\-0.44}$        |
| w                                          | -1                                     | $-1.098\substack{+0.035\\-0.032}$      | $-1.099\substack{+0.034\\-0.032}$      |
| $\Omega_{ede}^{ m RD}\left(\% ight)$       | 0                                      | 0                                      | < 1.14(2.44)                           |
| $\Omega_{ede}^{\mathrm{MD}}\left(\% ight)$ | 0                                      | 0                                      | < 0.22  (0.52)                         |

æ

(日) (四) (日) (日) (日)

### Results for $\mathsf{EDE}\mathsf{p}^{\mathrm{MD}_{\mathrm{Z_{thr}}}}(I)$



æ

### Results for $\mathsf{EDEp}^{\mathrm{MD},\mathrm{z_{thr}}}(II)$



æ

< □ > < 同 > < 回 > < 回 > < 回 >

### The impact of $\hat{c}_s^2$



æ

In order to pass the strong constraints on  $\Omega_{de}(z_{dec})$  we need to consider a more flexible shape for the latter

In order to pass the strong constraints on  $\Omega_{de}(z_{dec})$  we need to consider a more flexible shape for the latter  $\longrightarrow$  Binned  $\rho_{de}(z)$ , with

| Redshift bin        | $\rho_{de}(z)$                  |
|---------------------|---------------------------------|
| $z \leq 5$          | $\rho_{de}^{(0)}(1+z)^{3(1+w)}$ |
| $5 < z \le 10$      | $\rho_A(1+z)^3$                 |
| $10 < z \le 50$     | $\rho_B (1+z)^3$                |
| $50 < z \le 200$    | $\rho_C (1+z)^3$                |
| $200 < z \le 500$   | $\rho_D (1+z)^3$                |
| $500 < z \le 1000$  | $\rho_E (1+z)^3$                |
| $1000 < z \le 2000$ | $\rho_F (1+z)^4$                |
| $2000 < z \le 3000$ | $\rho_G (1+z)^4$                |
| $3000 < z \le 5000$ | $\rho_H (1+z)^4$                |
| $5000 < z \le 10^4$ | $\rho_I (1+z)^4$                |
| $z > 10^4$          | $\rho_J (1+z)^4$                |



21/24

3



21 / 24

æ

| Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CMBpol+SNIa                                                                                                                                                                                                                                                                      | CMBpol+SNIa+M                                                                                                                                                                                                                                                                     | CMBpol+SNIa+M+BAO                                                                                                                                                                                                                                                | CMBpol+SNIa+M+BAO+S <sub>8</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ω                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $0.02257^{+0.00022}_{-0.00023}$                                                                                                                                                                                                                                                  | $0.02277^{+0.00023}_{-0.00025}$                                                                                                                                                                                                                                                   | $0.02282^{+0.00024}_{-0.00025}$                                                                                                                                                                                                                                  | $0.02259 \pm 0.00021$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $\omega_{cdm}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $0.1222^{+0.0020}_{-0.0021}$                                                                                                                                                                                                                                                     | $0.1221 \pm 0.0022$                                                                                                                                                                                                                                                               | $0.1223^{+0.0020}_{-0.0021}$                                                                                                                                                                                                                                     | $0.1200^{+0.0013}_{-0.0014}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| τ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $0.055 \pm 0.009$                                                                                                                                                                                                                                                                | $0.056 \pm 0.009$                                                                                                                                                                                                                                                                 | $0.057^{+0.008}_{-0.009}$                                                                                                                                                                                                                                        | $0.053 \pm 0.008$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $0.9727^{+0.0072}_{-0.0073}$                                                                                                                                                                                                                                                     | $0.9752^{+0.0067}_{-0.0069}$                                                                                                                                                                                                                                                      | $0.9760^{+0.0070}_{-0.0071}$                                                                                                                                                                                                                                     | $0.9740^{+0.0061}_{-0.0067}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $H_0  [\rm km/s/Mpc]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $68.29^{+1.26}_{-1.36}$                                                                                                                                                                                                                                                          | $70.86^{+1.00}_{-1.10}$                                                                                                                                                                                                                                                           | $70.38^{+0.84}_{-0.89}$                                                                                                                                                                                                                                          | $69.85^{+0.76}_{-0.77}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| М                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $-19.405 \pm 0.032$                                                                                                                                                                                                                                                              | $-19.342^{+0.023}_{-0.024}$                                                                                                                                                                                                                                                       | $-19.350^{+0.019}_{-0.020}$                                                                                                                                                                                                                                      | $-19.365^{+0.018}_{-0.017}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $\sigma_8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $0.854^{+0.023}_{-0.025}$                                                                                                                                                                                                                                                        | $0.880^{+0.025}_{-0.029}$                                                                                                                                                                                                                                                         | $0.877^{+0.026}_{-0.029}$                                                                                                                                                                                                                                        | $0.833^{+0.016}_{-0.017}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $S_8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $0.869^{+0.025}_{-0.029}$                                                                                                                                                                                                                                                        | $0.863 \pm 0.029$                                                                                                                                                                                                                                                                 | $0.866^{+0.026}_{-0.028}$                                                                                                                                                                                                                                        | $0.819^{+0.014}_{-0.016}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $\sigma_{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $0.840^{+0.019}_{-0.022}$                                                                                                                                                                                                                                                        | $0.843 \pm 0.022$                                                                                                                                                                                                                                                                 | $0.843^{+0.020}_{-0.022}$                                                                                                                                                                                                                                        | $0.806^{+0.012}_{-0.013}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $S_{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $0.851^{+0.022}_{-0.025}$                                                                                                                                                                                                                                                        | $0.854^{+0.024}_{-0.027}$                                                                                                                                                                                                                                                         | $0.855^{+0.023}_{-0.026}$                                                                                                                                                                                                                                        | $0.810^{+0.014}_{-0.016}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $r_d$ [Mpc]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $145.66^{+0.90}_{-0.70}$                                                                                                                                                                                                                                                         | $145.22^{+0.95}_{-0.90}$                                                                                                                                                                                                                                                          | $145.06^{+0.97}_{-0.89}$                                                                                                                                                                                                                                         | $146.51^{+0.64}_{-0.51}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $-1.037^{+0.043}_{-0.041}$                                                                                                                                                                                                                                                       | $-1.070 \pm 0.038$                                                                                                                                                                                                                                                                | $-1.048^{+0.037}_{-0.034}$                                                                                                                                                                                                                                       | $-1.037^{+0.032}_{-0.031}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CMBpolens+SNIa                                                                                                                                                                                                                                                                   | CMBpolens+SNIa+M                                                                                                                                                                                                                                                                  | CMBpolens+SNIa+M+BAO                                                                                                                                                                                                                                             | ${\rm CMBpolens+SNIa+M+BAO}{+}S_8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ω                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $0.02255^{+0.00020}_{-0.00022}$                                                                                                                                                                                                                                                  | $0.02274^{+0.00023}_{-0.00025}$                                                                                                                                                                                                                                                   | $0.02277^{+0.00022}_{-0.00024}$                                                                                                                                                                                                                                  | $0.02266^{+0.00021}_{-0.00020}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\omega_{odm}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.1915+0.0015                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                  | 10.0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.1210-0.0016                                                                                                                                                                                                                                                                    | $0.1211 \pm 0.0017$                                                                                                                                                                                                                                                               | $0.1214 \pm 0.0016$                                                                                                                                                                                                                                              | $0.1193^{+0.0013}_{-0.0014}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| τ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $0.1213_{-0.0016}$<br>$0.054 \pm 0.008$                                                                                                                                                                                                                                          | $0.1211 \pm 0.0017$<br>$0.056^{+0.008}_{-0.009}$                                                                                                                                                                                                                                  | $0.1214 \pm 0.0016$<br>$0.056 \pm 0.008$                                                                                                                                                                                                                         | $0.1193^{+0.0013}_{-0.0014}$<br>$0.055^{+0.008}_{-0.007}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| τ<br>n <sub>s</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $0.1213_{-0.0016}$<br>$0.054 \pm 0.008$<br>$0.9723_{-0.0069}^{+0.0068}$                                                                                                                                                                                                          | $\frac{0.1211 \pm 0.0017}{0.056^{+0.008}_{-0.009}}$ $\frac{0.9748^{+0.0067}_{-0.0071}}{0.0071}$                                                                                                                                                                                   | $0.1214 \pm 0.0016$<br>$0.056 \pm 0.008$<br>$0.9746^{+0.0068}_{-0.0069}$                                                                                                                                                                                         | $\frac{0.1193^{+0.0013}_{-0.0014}}{0.055^{+0.008}_{-0.007}}$ $0.9727^{+0.0061}_{-0.0068}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| au<br>$n_s$<br>$H_0 [km/s/Mpc]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{r} 0.1213_{-0.0016} \\ \hline 0.054 \pm 0.008 \\ \hline 0.9723^{+0.0068}_{-0.0069} \\ \hline 68.26^{+1.17}_{-1.27} \end{array}$                                                                                                                                   | $\begin{array}{c} 0.1211 \pm 0.0017 \\ 0.056^{+0.008}_{-0.009} \\ \hline 0.9748^{+0.0067}_{-0.0071} \\ 70.84^{+1.04}_{-1.07} \end{array}$                                                                                                                                         | $\begin{array}{c} 0.1214 \pm 0.0016 \\ \hline 0.056 \pm 0.008 \\ \hline 0.9746^{+0.0068}_{-0.0069} \\ \hline 70.21^{+0.80}_{-0.84} \end{array}$                                                                                                                  | $\frac{0.1193^{+0.0013}_{-0.0014}}{0.055^{+0.008}_{-0.007}}$ $\frac{0.9727^{+0.0061}_{-0.0068}}{70.09^{+0.76}_{-0.73}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| au<br>$n_s$<br>$H_0 [km/s/Mpc]$<br>M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{r} 0.1213_{-0.0016} \\ \hline 0.054 \pm 0.008 \\ \hline 0.9723^{+0.0069}_{-0.0069} \\ \hline 68.26^{+1.17}_{-1.27} \\ \hline -19.406^{+0.027}_{-0.029} \end{array}$                                                                                               | $\begin{array}{c} 0.1211 \pm 0.0017 \\ \hline 0.056^{+0.008}_{-0.009} \\ \hline 0.9748^{+0.0067}_{-0.0071} \\ \hline 70.84^{+1.04}_{-1.07} \\ \hline -19.343^{+0.024}_{-0.025} \end{array}$                                                                                       | $\begin{array}{c} 0.1214 \pm 0.0016 \\ 0.056 \pm 0.008 \\ 0.9746^{+0.0068}_{-0.0069} \\ \overline{0.0746^{+0.0069}_{-0.0069}} \\ \overline{0.21^{+0.84}_{-0.84}} \\ -19.355 \pm 0.018 \end{array}$                                                               | $\begin{array}{c} 0.1193\substack{+0.0013\\-0.0014}\\ 0.055\substack{+0.008\\-0.007}\\ 0.9727\substack{+0.0061\\-0.73}\\ \hline 70.00\substack{+0.76\\-0.73}\\ -19.362\pm 0.016 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| au<br>$H_0 [km/s/Mpc]$<br>M<br>$\sigma_8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{r} 0.1213_{-0.0016} \\ \hline 0.054 \pm 0.008 \\ 0.9723_{+0.0068}^{+0.008} \\ \hline 68.26_{-1.27}^{+1.17} \\ \hline -19.406_{-0.029}^{+0.017} \\ \hline 0.845_{-0.020}^{+0.017} \end{array}$                                                                     | $\begin{array}{c} 0.1211 \pm 0.0017 \\ 0.056 \substack{+0.008\\-0.009} \\ 0.9748 \substack{+0.0067\\-0.0071 \\ \hline 70.84 \substack{+1.04\\-1.07} \\ -19.343 \substack{+0.024\\-0.025 \\ \hline 0.868 \substack{+0.019\\-0.021} \end{array}$                                    | $\begin{array}{c} 0.1214\pm 0.0016\\ \hline 0.056\pm 0.008\\ 0.9746^{+0.0089}_{-0.0099}\\ \hline 70.21^{+0.80}_{-0.84}\\ \hline -19.355\pm 0.018\\ \hline 0.864^{+0.019}_{-0.021}\\ \end{array}$                                                                 | $\begin{array}{c} 0.1193\substack{+0.0013\\-0.0014}\\ 0.055\substack{+0.008\\-0.007}\\ 0.9727\substack{+0.0061\\-0.73}\\ \hline 70.00\substack{+0.76\\-0.73}\\ -19.362\pm0.016\\ 0.839\substack{+0.013\\-0.0215}\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| au<br>$H_0 [km/s/Mpc]$<br>M<br>$\sigma_8$<br>$S_8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} 0.1213_{-0.016} \\ 0.054 \pm 0.008 \\ 0.9723_{-0.0069}^{+0.17} \\ 68.26_{-1.27}^{+1.17} \\ -19.406_{-0.029}^{+0.017} \\ 0.845_{-0.020}^{+0.019} \\ 0.857_{-0.021}^{+0.019} \end{array}$                                                                        | $\begin{array}{c} 0.1211 \pm 0.0017 \\ 0.056 \substack{+0.008 \\ -0.009} \\ 0.9748 \substack{+0.0067 \\ -0.0071} \\ 70.84 \substack{+1.04 \\ -1.07} \\ -19.343 \substack{+0.024 \\ -0.025} \\ 0.868 \substack{+0.019 \\ -0.021} \\ 0.848 \substack{+0.020 \\ -0.022} \end{array}$ | $\begin{array}{c} 0.1214\pm 0.0016\\ 0.056\pm 0.008\\ 0.9746^{+0.008}_{-0.009}\\ \overline{}70.21^{+0.80}_{-0.84}\\ -19.355\pm 0.018\\ 0.864^{+0.019}_{-0.021}\\ 0.853^{+0.019}_{-0.020}\\ \end{array}$                                                          | $\begin{array}{c} 0.1193^{+0.0014}_{-0.0014}\\ \hline 0.055^{+0.008}_{-0.007}\\ 0.0727^{+0.0061}_{-0.008}\\ \hline 70.00^{+0.76}_{-0.7}\\ -19.362\pm0.016\\ 0.839^{+0.013}_{-0.023}\\ 0.824^{+0.012}_{-0.013}\\ \hline 0.824^{+0.012}_{-0.013}\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $	\frac{	au}{H_0 \ [km/s/Mpc]} \\ 	\frac{	extsf{M}}{	extsf{M}} \\ 	extsf{M} \\ 	extsf{\sigma}_8 \\ 	extsf{S}_8 \\ 	extsf{\sigma}_{12} \\ 	extsf{\sigma}_{12} \\ 	extsf{M} \\ 	extsf{$ | $\begin{array}{c} 0.1213_{-0.0016}\\ 0.054\pm0.008\\ 0.9723_{-0.0069}^{+0.008}\\ 68.26_{-1.27}^{+1.17}\\ -19.406_{-0.029}^{-0.029}\\ 0.845_{-0.020}^{-0.020}\\ 0.857_{-0.021}^{+0.017}\\ \end{array}$                                                                            | $\begin{array}{c} 0.1211 \pm 0.0017 \\ 0.056^{+0.008} \\ 0.0748^{+0.0067} \\ -0.097 \\ 1.0748^{+0.0067} \\ -19.343^{+0.024} \\ -19.343^{+0.024} \\ 0.868^{+0.019} \\ 0.868^{+0.019} \\ 0.848^{+0.022} \\ 0.841^{+0.015} \\ 0.831^{+0.015} \\ \end{array}$                         | $\begin{array}{c} 0.1214\pm0.0016\\ 0.056\pm0.008\\ 0.9746^{+0.0088}_{-0.0099}\\ 70.21^{+0.84}_{-0.84}\\ -19.355\pm0.018\\ 0.864^{+0.019}_{-0.019}\\ 0.833^{+0.019}_{-0.029}\\ 0.833^{+0.015}_{-0.016}\\ \end{array}$                                            | $\begin{array}{c} 0.1193^{+0.0014}_{-0.0014}\\ 0.055^{+0.008}_{-0.007}\\ 0.9727^{+0.008}_{-0.008}\\ \overline{}\\ 70.00^{+0.76}_{-0.73}\\ -1.9.362\pm0.016\\ 0.839^{+0.015}_{-0.0215}\\ 0.824^{+0.012}_{-0.012}\\ 0.824^{+0.012}_{-0.011}\\ 0.810^{-0.011}_{-0.011}\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $	au = rac{	au + r_{s}}{	extsf{Mpc}} = rac{	extsf{M}}{	extsf{M}} + tridtrid{	extsf{M}} + trid{	extsf{M}} + tridt + trid{	extsf{M}} + trid{$                                                                                                                                                                                              | $\begin{array}{c} 0.1243 \pm 0.0016\\ 0.054 \pm 0.008\\ 0.9723 \pm 0.0068\\ 68.26 \pm 1.17\\ -19.406 \pm 0.029\\ 0.845 \pm 0.019\\ 0.845 \pm 0.019\\ 0.857 \pm 0.019\\ \end{array}$                                                                                              | $\begin{array}{c} 0.1211\pm0.0017\\ 0.056^{+0.008}\\ 0.9748^{+0.0071}\\ -0.984^{+1.04}\\ -19.343^{+0.027}\\ -19.343^{+0.029}\\ 0.868^{+0.029}\\ 0.848^{+0.029}\\ 0.848^{+0.029}\\ 0.841^{+0.016}\\ 0.840^{+0.016}\\ 0.840^{+0.016}\\ \end{array}$                                 | $\begin{array}{c} 0.1214\pm0.0016\\ 0.056\pm0.008\\ 0.9764^{+0.0008}\\ 70.21^{+0.008}\\ -19.355\pm0.018\\ 0.864^{+0.001}\\ 0.853^{+0.019}\\ 0.853^{+0.019}\\ 0.833^{+0.018}\\ 0.843\pm0.018\\ \end{array}$                                                       | $\begin{array}{c} 0.1133 \substack{+0.001\\-0.005} \atop +0.008\\0.055 \substack{+0.008\\-0.007} \\ 0.0727 \substack{+0.001\\-0.006} \\ 7.0.00 \begin{array}{+}0.0727 \atop +0.016 \\ 0.839 \substack{+0.015\\-0.018} \\ 0.834 \substack{+0.015\\-0.013} \\ 0.834 \substack{+0.012\\-0.013} \\ 0.834 \substack{+0.012\\-0.012} \\ 0$ |
| $\begin{array}{c} \tau \\ \hline n_s \\ H_0 \; [{\rm km/s/Mpc}] \\ M \\ \hline \sigma_8 \\ \hline S_8 \\ \sigma_{12} \\ \hline S_{12} \\ \hline r_s(z_d) \; [{\rm Mpc}] \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} 0.1243 \pm 0.0016\\ 0.054 \pm 0.008\\ 0.9723 \pm 0.0068\\ 0.9723 \pm 0.0068\\ 0.8.26 \pm 1.17\\ -19.406 \pm 0.029\\ 0.845 \pm 0.019\\ 0.845 \pm 0.019\\ 0.857 \pm 0.019\\ 0.857 \pm 0.019\\ 0.857 \pm 0.019\\ 145.98 \pm 0.71\\ 145.98 \pm 0.71\\ \end{array}$ | $\begin{array}{c} 0.211\pm0.0017\\ 0.056^{+0.008}_{-0.007}\\ 0.9748^{+0.007}_{-0.007}\\ -19.343^{+0.007}_{-0.05}\\ 0.868^{+0.019}_{-0.05}\\ 0.848^{+0.019}_{-0.05}\\ 0.848^{+0.019}_{-0.01}\\ 0.844^{+0.015}_{-0.01}\\ 0.840^{+0.017}_{-0.01}\\ \end{array}$                      | $\begin{array}{c} 0.1214\pm0.0016\\ 0.056\pm0.008\\ 0.9746^{+0.0089}\\ \overline{10,214^{+0.008}_{-0.009}}\\ 1.09.355\pm0.018\\ 0.854^{+0.019}_{-0.009}\\ 0.853^{+0.019}_{-0.009}\\ 0.833^{+0.019}_{-0.018}\\ 0.843\pm0.018\\ 145.51^{+0.05}_{-0.71}\end{array}$ | $\begin{array}{c} 0.1193\substack{-0.001\\-0.005} \\ 0.0972\substack{-0.001\\-0.0000} \\ \hline 70.00^{+0.75}\\ -1.9.602\pm 0.016 \\ 0.839\substack{+0.015\\-0.011} \\ 0.834\substack{+0.012\\-0.011} \\ 0.834\substack{+0.012\\-0.011} \\ 0.834\substack{+0.012\\-0.011} \\ 0.834\substack{+0.012\\-0.011} \\ 0.834\substack{+0.012\\-0.011} \\ 146.64\substack{+0.012\\-0.010} \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

| Parameter                 | CMBpolens+SNIa                  | CMBpolens+SNIa+M+BAO            | ${\rm CMBpolens+SNIa+M+BAO+}S_8$ |
|---------------------------|---------------------------------|---------------------------------|----------------------------------|
| $\omega_b$                | $0.02255^{+0.00020}_{-0.00022}$ | $0.02277^{+0.00022}_{-0.00024}$ | $0.02266^{+0.00021}_{-0.00020}$  |
| $\omega_{cdm}$            | $0.1215^{+0.0015}_{-0.0016}$    | $0.1214 \pm 0.0016$             | $0.1193^{+0.0013}_{-0.0014}$     |
| τ                         | $0.054 \pm 0.008$               | $0.056\pm0.008$                 | $0.055^{+0.008}_{-0.007}$        |
| $n_s$                     | $0.9723^{+0.0068}_{-0.0069}$    | $0.9746^{+0.0068}_{-0.0069}$    | $0.9727^{+0.0061}_{-0.0068}$     |
| $H_0 \; [{\rm km/s/Mpc}]$ | $68.26^{+1.17}_{-1.27}$         | $70.21_{-0.84}^{+0.80}$         | $70.00^{+0.76}_{-0.73}$          |
| М                         | $-19.406^{+0.027}_{-0.029}$     | $-19.355 \pm 0.018$             | $-19.362 \pm 0.016$              |
| $\sigma_8$                | $0.845^{+0.017}_{-0.020}$       | $0.864^{+0.019}_{-0.021}$       | $0.839^{+0.013}_{-0.0215}$       |
| $S_8$                     | $0.857^{+0.019}_{-0.021}$       | $0.853^{+0.019}_{-0.020}$       | $0.824^{+0.012}_{-0.013}$        |
| $\sigma_{12}$             | $0.830^{+0.015}_{-0.016}$       | $0.833^{+0.015}_{-0.016}$       | $0.810^{+0.010}_{-0.011}$        |
| $S_{12}$                  | $0.844 \pm 0.021$               | $0.843 \pm 0.018$               | $0.815^{+0.011}_{-0.013}$        |
| $r_s(z_d)$ [Mpc]          | $145.98^{+0.71}_{-0.53}$        | $145.51^{+0.83}_{-0.71}$        | $146.46_{-0.44}^{+0.56}$         |
| w                         | $-1.035^{+0.039}_{-0.040}$      | $-1.050^{+0.034}_{-0.035}$      | $-1.045 \pm 0.032$               |

| Parameter               | CMBpolens+SNIa                  | CMBpolens+SNIa+M+BAO            | ${\rm CMBpolens+SNIa+M+BAO+}S_8$ |
|-------------------------|---------------------------------|---------------------------------|----------------------------------|
| $\omega_b$              | $0.02255^{+0.00020}_{-0.00022}$ | $0.02277^{+0.00022}_{-0.00024}$ | $0.02266^{+0.00021}_{-0.00020}$  |
| $\omega_{cdm}$          | $0.1215^{+0.0015}_{-0.0016}$    | $0.1214 \pm 0.0016$             | $0.1193^{+0.0013}_{-0.0014}$     |
| τ                       | $0.054 \pm 0.008$               | $0.056\pm0.008$                 | $0.055^{+0.008}_{-0.007}$        |
| $n_s$                   | $0.9723^{+0.0068}_{-0.0069}$    | $0.9746^{+0.0068}_{-0.0069}$    | $0.9727^{+0.0061}_{-0.0068}$     |
| $H_0 \; [\rm km/s/Mpc]$ | $68.26^{+1.17}_{-1.27}$         | $70.21_{-0.84}^{+0.80}$         | $70.00^{+0.76}_{-0.73}$          |
|                         | 2.77 sigma                      | 1.95 sigma                      | 2.13 sigma                       |
| $\sigma_8$              | $0.845^{+0.017}_{-0.020}$       | $0.864^{+0.019}_{-0.021}$       | $0.839^{+0.013}_{-0.0215}$       |
| $S_8$                   | $0.857^{+0.019}_{-0.021}$       | $0.853^{+0.019}_{-0.020}$       | $0.824^{+0.012}_{-0.013}$        |
| $\sigma_{12}$           | $0.830^{+0.015}_{-0.016}$       | $0.833^{+0.015}_{-0.016}$       | $0.810^{+0.010}_{-0.011}$        |
| $S_{12}$                | $0.844 \pm 0.021$               | $0.843 \pm 0.018$               | $0.815^{+0.011}_{-0.013}$        |
| $r_s(z_d)$ [Mpc]        | $145.98^{+0.71}_{-0.53}$        | $145.51^{+0.83}_{-0.71}$        | $146.46_{-0.44}^{+0.56}$         |
| w                       | $-1.035^{+0.039}_{-0.040}$      | $-1.050^{+0.034}_{-0.035}$      | $-1.045 \pm 0.032$               |

| Parameter        | CMBpolens+SNIa                  | CMBpolens+SNIa+M+BAO            | ${\rm CMBpolens+SNIa+M+BAO+}S_8$ |
|------------------|---------------------------------|---------------------------------|----------------------------------|
| $\omega_b$       | $0.02255^{+0.00020}_{-0.00022}$ | $0.02277^{+0.00022}_{-0.00024}$ | $0.02266^{+0.00021}_{-0.00020}$  |
| $\omega_{cdm}$   | $0.1215^{+0.0015}_{-0.0016}$    | $0.1214 \pm 0.0016$             | $0.1193^{+0.0013}_{-0.0014}$     |
| τ                | $0.054 \pm 0.008$               | $0.056\pm0.008$                 | $0.055^{+0.008}_{-0.007}$        |
| $n_s$            | $0.9723^{+0.0068}_{-0.0069}$    | $0.9746^{+0.0068}_{-0.0069}$    | $0.9727^{+0.0061}_{-0.0068}$     |
|                  | 3.80 sigma                      | 3.07 sigma                      | 3.28 sigma                       |
| М                | $-19.406^{+0.027}_{-0.029}$     | $-19.355 \pm 0.018$             | $-19.362 \pm 0.016$              |
| $\sigma_8$       | $0.845^{+0.017}_{-0.020}$       | $0.864^{+0.019}_{-0.021}$       | $0.839^{+0.013}_{-0.0215}$       |
| $S_8$            | $0.857^{+0.019}_{-0.021}$       | $0.853^{+0.019}_{-0.020}$       | $0.824^{+0.012}_{-0.013}$        |
| $\sigma_{12}$    | $0.830^{+0.015}_{-0.016}$       | $0.833^{+0.015}_{-0.016}$       | $0.810^{+0.010}_{-0.011}$        |
| $S_{12}$         | $0.844 \pm 0.021$               | $0.843 \pm 0.018$               | $0.815^{+0.011}_{-0.013}$        |
| $r_s(z_d)$ [Mpc] | $145.98^{+0.71}_{-0.53}$        | $145.51^{+0.83}_{-0.71}$        | $146.46_{-0.44}^{+0.56}$         |
| w                | $-1.035^{+0.039}_{-0.040}$      | $-1.050^{+0.034}_{-0.035}$      | $-1.045 \pm 0.032$               |

| Parameter                 | CMBpolens+SNIa                  | CMBpolens+SNIa+M+BAO            | ${\rm CMBpolens+SNIa+M+BAO+}S_8$ |
|---------------------------|---------------------------------|---------------------------------|----------------------------------|
| $\omega_b$                | $0.02255^{+0.00020}_{-0.00022}$ | $0.02277^{+0.00022}_{-0.00024}$ | $0.02266^{+0.00021}_{-0.00020}$  |
| $\omega_{cdm}$            | $0.1215^{+0.0015}_{-0.0016}$    | $0.1214 \pm 0.0016$             | $0.1193^{+0.0013}_{-0.0014}$     |
| τ                         | $0.054 \pm 0.008$               | $0.056 \pm 0.008$               | $0.055^{+0.008}_{-0.007}$        |
| $n_s$                     | $0.9723^{+0.0068}_{-0.0069}$    | $0.9746^{+0.0068}_{-0.0069}$    | $0.9727^{+0.0061}_{-0.0068}$     |
| $H_0 \; [{\rm km/s/Mpc}]$ | $68.26^{+1.17}_{-1.27}$         | $70.21_{-0.84}^{+0.80}$         | $70.00^{+0.76}_{-0.73}$          |
| М                         | $-19.406^{+0.027}_{-0.029}$     | $-19.355 \pm 0.018$             | $-19.362 \pm 0.016$              |
| $\sigma_8$                | $0.845^{+0.017}_{-0.020}$       | $0.864^{+0.019}_{-0.021}$       | $0.839^{+0.013}_{-0.0215}$       |
| $S_8$                     | $0.857^{+0.019}_{-0.021}$       | $0.853^{+0.019}_{-0.020}$       | $0.824^{+0.012}_{-0.013}$        |
| $\sigma_{12}$             | $0.830^{+0.015}_{-0.016}$       | $0.833^{+0.015}_{-0.016}$       | $0.810^{+0.010}_{-0.011}$        |
| $S_{12}$                  | $0.844 \pm 0.021$               | $0.843 \pm 0.018$               | $0.815^{+0.011}_{-0.013}$        |
| $r_s(z_d)$ [Mpc]          | $145.98^{+0.71}_{-0.53}$        | $145.51^{+0.83}_{-0.71}$        | $146.46_{-0.44}^{+0.56}$         |
| w                         | $-1.035^{+0.039}_{-0.040}$      | $-1.050^{+0.034}_{-0.035}$      | $-1.045 \pm 0.032$               |

| Parameter               | CMBpolens+SNIa                  | CMBpolens+SNIa+M+BAO            | ${\rm CMBpolens+SNIa+M+BAO+}S_8$ |
|-------------------------|---------------------------------|---------------------------------|----------------------------------|
| $\omega_b$              | $0.02255^{+0.00020}_{-0.00022}$ | $0.02277^{+0.00022}_{-0.00024}$ | $0.02266^{+0.00021}_{-0.00020}$  |
| $\omega_{cdm}$          | $0.1215^{+0.0015}_{-0.0016}$    | $0.1214 \pm 0.0016$             | $0.1193^{+0.0013}_{-0.0014}$     |
| τ                       | $0.054 \pm 0.008$               | $0.056\pm0.008$                 | $0.055^{+0.008}_{-0.007}$        |
| $n_s$                   | $0.9723^{+0.0068}_{-0.0069}$    | $0.9746^{+0.0068}_{-0.0069}$    | $0.9727^{+0.0061}_{-0.0068}$     |
| $H_0 \; [\rm km/s/Mpc]$ | $68.26^{+1.17}_{-1.27}$         | $70.21_{-0.84}^{+0.80}$         | $70.00^{+0.76}_{-0.73}$          |
| М                       | $-19.406^{+0.027}_{-0.029}$     | $-19.355 \pm 0.018$             | $-19.362 \pm 0.016$              |
| $\sigma_8$              | $0.845^{+0.017}_{-0.020}$       | $0.864^{+0.019}_{-0.021}$       | $0.839^{+0.013}_{-0.0215}$       |
| $S_8$                   | $0.857^{+0.019}_{-0.021}$       | $0.853^{+0.019}_{-0.020}$       | $0.824^{+0.012}_{-0.013}$        |
| $\sigma_{12}$           | $0.830^{+0.015}_{-0.016}$       | $0.833^{+0.015}_{-0.016}$       | $0.810^{+0.010}_{-0.011}$        |
| S <sub>12</sub>         | $0.844 \pm 0.021$               | $0.843 \pm 0.018$               | $0.815^{+0.011}_{-0.013}$        |
| $r_s(z_d)$ [Mpc]        | $145.98^{+0.71}_{-0.53}$        | $145.51^{+0.83}_{-0.71}$        | $146.46_{-0.44}^{+0.56}$         |
| w                       | $-1.035^{+0.039}_{-0.040}$      | $-1.050^{+0.034}_{-0.035}$      | $-1.045 \pm 0.032$               |

• We have obtained very tight upper bounds on the EDE fraction in the RDE and MDE epochs, in the context of DE models with scaling solutions.

- We have obtained very tight upper bounds on the EDE fraction in the RDE and MDE epochs, in the context of DE models with scaling solutions.
- They do not alleviate significantly the cosmological tensions.

- We have obtained very tight upper bounds on the EDE fraction in the RDE and MDE epochs, in the context of DE models with scaling solutions.
- They do not alleviate significantly the cosmological tensions.
- We have performed a more model independent reconstruction of  $\Omega_{de}(z)$ , still assuming  $\hat{c}_s^2 = 1$ .

- We have obtained very tight upper bounds on the EDE fraction in the RDE and MDE epochs, in the context of DE models with scaling solutions.
- They do not alleviate significantly the cosmological tensions.
- We have performed a more model independent reconstruction of  $\Omega_{de}(z)$ , still assuming  $\hat{c}_s^2 = 1$ .
- We find very strong constraints around the CMB decoupling time.

- We have obtained very tight upper bounds on the EDE fraction in the RDE and MDE epochs, in the context of DE models with scaling solutions.
- They do not alleviate significantly the cosmological tensions.
- We have performed a more model independent reconstruction of  $\Omega_{de}(z)$ , still assuming  $\hat{c}_s^2 = 1$ .
- We find very strong constraints around the CMB decoupling time.
- Large values of  $\Omega_{ede}^{\rm RD}$  allow larger values of  $H_0$ , but typically lead to a worsening of the LSS tension.

- We have obtained very tight upper bounds on the EDE fraction in the RDE and MDE epochs, in the context of DE models with scaling solutions.
- They do not alleviate significantly the cosmological tensions.
- We have performed a more model independent reconstruction of  $\Omega_{de}(z)$ , still assuming  $\hat{c}_s^2 = 1$ .
- We find very strong constraints around the CMB decoupling time.
- Large values of  $\Omega_{ede}^{RD}$  allow larger values of  $H_0$ , but typically lead to a worsening of the LSS tension.
- The latter can also be loosened with a greater EDE fraction in the MDE.

- We have obtained very tight upper bounds on the EDE fraction in the RDE and MDE epochs, in the context of DE models with scaling solutions.
- They do not alleviate significantly the cosmological tensions.
- We have performed a more model independent reconstruction of  $\Omega_{de}(z)$ , still assuming  $\hat{c}_s^2 = 1$ .
- We find very strong constraints around the CMB decoupling time.
- Large values of  $\Omega_{ede}^{RD}$  allow larger values of  $H_0$ , but typically lead to a worsening of the LSS tension.
- The latter can also be loosened with a greater EDE fraction in the MDE.
- We have studied these tensions in terms of M and  $s_{12}/S_{12}$ .

## Thanks for your attention!

(日) (四) (日) (日) (日)