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The cosmological constant problems

o Observations tell us that our universe is expanding in an
accelerated way due to " Dark Energy”. It is usually
related with the cosmological constant A and the vacuum
Cosmological . . 2
constant energy density of quantum fields.

problems

o Observations vs predictions:

A _ _
P35 = i 107 GeV*,  pzpe ~ mi ~ 10713 GeV*

o Coincidence problem:

b. b.
PR~ PCOM:
But pcpam decreases with time and pp is assumed to be
constant .
2We work in a flat FLRW space-time with ds? = a(7)?n"" x*x",
())=d/dr and H = at/a = aH
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Dynamical vacuum energy

Cristian

- @ The Cosmological principle still permits a function pa(t)
or even pa(x(t)), where x(t) is a dynamical variable.3

@ It may provide a better phenomenological account of
cosmological observations and tensions. *

Dynamical o For instance the RVM, from renormalization group
energy arguments: 3
H) = Co + vH?). 1
pr(H) = == (Co - vHF) &)

Some analyses® indicate that v ~ 1073 <« 1.

o More possibilities: bigger powers of H and its derivatives...

3some possibilities in: E. Di Valentino et al Astropart. Phys. 131

(2021)

*J). Sola et al. Class. Quant. Grav. 37 (2020); EPL 134 (2021)

%J. Sola, A. Gémez-Valent, and J. de Cruz Pérez, Astrophys. J., 836
(2017)
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Non-minimal coupling and Quantum Fluctuations

o o In general, pa in the effective action of QFT in curved
e space-time is a coupling depending on a scale M

associated to the cosmological evolution®(M = H, R, ...).
o The gravitational field equations read

1
Ry — ERglw + 8T Gnpaguw = 8T Gy Tﬁatter, (2)

flon minimat o For simplicity, consider only one real scalar field, ¢,

coupling and

QUEnGT contribution to le’,'j’”e’.

Fluctuations

Sl6l = - [ x5890 + 5+ R
(3)
where £ is the non-minimal coupling parameter.

®llya L. Shapiro and Joan Sola, JHEP 0202 (2002) 006; J. Sol3,
J.Phys. A41 (2008) 164066
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Non-minimal coupling and Quantum Fluctuations

o We split the field in a classical and quantum parts,

¢(T7 X) = d)b(T) + 6¢(7_7 X), (4)
where
1 3 ikx b ik pk
” So(7,x) = =7 / &3k [Ake hi(7) + Al hk(T)] .
Non-minimal
g)upling and (5)
Fluctuations o Given the former field decomposition, the EMT

decomposes itself as (T[f,,) = <T[f,£’> + (Tg,‘ﬁ). The total
vacuum contribution to the EMT can be postulated to
read

(T00) = —pngu + (Tp0). (6)

where pyac ~ (T5C).
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Adiabatic Regularization

The usual commutation relations lead us to the Klein-Gordon
equation for the Fourier modes

(O—m? — ER)S¢(7,x) =0 = hl +Q2h, = 0. (7)

Here Q2 = k? + a?m? 4+ 2*(£ — 1/6)R. An ansatz is used to
solve it:

Non—lr'ninimaJ , ( ) e,'f‘r Wi (71)dm (8)
Quanturn k7))~ ———,
Sluctuations Wk (T)
with Wy being the solution of
1w/ 3 /W2
w2 =gz LW, 3 (W)
k 2W, T3 (Wk )
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Adiabatic Regularization

- For an adiabatic (slowly varying) Q, we may use the former
Moreno differential equation as a recurrence relation. In our scenario,
the WKB solution is organized through adiabatic orders:

o Of order 0: k2, m? and a(7).

o Of order 1: 2’ and H.

o Of order 2: a”, (3)?, H' \ H2...

Non-minimal o Each aditional derivative increases the adiabatic order by

coupling and

Quantum one unit.

Fluctuations

o The solution, then, is organized as follows
W =wO + w® + w® 4+ ... (10)

the non-appearance of the odd adiabatic orders is justified
by means of general covariance.
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Adiabatic Regularization

o First term W(O) = wy = k% + a%(7)M?2, M an arbitrary
mass scale mtroduced for renormalltzatlon purposes’. Also
A% = m? — M?, of adiabatic order 2.

@ Subsequent orders are obtained by iteration:

2 A2 1/ 2

Non-minimal _ a“A 3 1 Wy 3 (wk)
coupling and Wi = + 2w 2 2 (6 - 1/6) R——-— + 8 w3 cee (11)
Quantum w© %
Fluctuations

@)
Wk

@ Using this procedure we can compute the expected value
of ng’ up to 4th adiabatic order:

"A. Ferreiro and J. Navarro-Salas, Phys. Lett. B 792 (2019) 81
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Adiabatic Regularization

Cristian
Moreno

Ata? 4004
M*H a'M
<T‘5¢ i /dkk2 [mk 2= @H"H — H? + 81 H? + am*)
a

40 16}
725 M 1052° M8
(”H H? 4ot ) — —y
8w k 64wk
1 6H?  6aAMPHZ  aPMP
e )T (67" — 31" + 12117
6 wg wi 2u.1
4814 64/4
Non-minimal am 1942 4 M (12)
coupling and 8w’ 409
k k
Quantum N2 M2
- 1 5457
Fluctuations + (§ _ ,) ,7(727{”’){ — 362 — 1087-[4) ('H 2+ H* )
6 4wi w?

, [a2a%  a'at aAHIMPA? 5 SHZMta?
P /dkk - - =
Tea

Wi 4wi ZwE 8 “"'Z

N (‘g 1) 322 A%2H? N 9a* M2 A2H? .
6 wi wi Y
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Renormalization

Gt o Adiabatic regularization let us to localize the divergences
S explicitly of <ng>. We can split it as

(738 (M) = (T3¢

o We compute terms up to 4th order because the
E‘OTF;I?::E divergences are only present up to this adiabatic order.®

Quantum Thus, we define the renormalized EMT in curved
space-time at the scale M as follows:

(M) +(Tog) (M), (13)

Div Non—Div

Fluctuations

(T Ren(M) = (TSN (m) — (T OD(M),  (14)

where superscript (0 — 4) means up to adiabatic order 4.

8Bunch, T. S. Journal of Physics A: Mathematical and General, 13(4),
12971310; Quantum Fields in Curved Space, Birrell and Davies

11/19



Renormalization

o Following this prescription, the resulting renormalized
value is

2

2
5¢ _ 4 4 2012 4 4 m
(Too YRen(M) = 1282 (fM +4m“M* —3m" 4+ 2m" log W)
2 2
_ (5 _ 1) 3H2 (m2 — M? — m?log 12) (15)
Non-minimal 6 16w M
coupling and 1\29 (2H"’H —H?— 3H4) m?
Quantunj + <£ _ ,> |og — 4 ...
Fluctuations 6 167222 M?

o The ~ m* M* terms are present as expected.

o For M = m all the terms up to 4th orders vanish.
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Renormalized Vacuum Energy

@ The renormalization program needs to count the higher
derivative terms in the classical effective action:

G+ oA(M)gs + a1 (M)HE) = Tt + (TEE) (M), (16)

8w Gy (M)
@ As usual, we want to compare at different scales, M and
Mo,
56 _ (7%
R lized <T‘“/>Ren (M) <T‘“’>Ren (MO) (17)
Vacuum = f1(m, M, Mo)Gpuy + fop (m, M, Mo)gpuu + fa (m, M, Mo)HY),
Energy and N
RVM .
S where fx(m, M, My) = X(M) — X(My) for each coupling.
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Renormalized Vacuum Energy

Cristian

Moreno

Setting p =v =0,

fo—1(m, M, Mo) = 5—1 1 /\ﬂz—lvlg—mﬂogﬂ2 (18)
B 6/ 16m? M2’
1 4 4 2,812 2 4 M?
pr(m, M, MO):W M —M0—4m (M _M0)+2m |OgW )

0

(19)
Renormalized 1 1 2 M2

Vacuum f;’l(m? Ma MO) - 3272 <§ - 6) |Og Vg (20)

Energy and
RVM
connection
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Renormalized
Vacuum
Energy and
RVM
connection

Renormalized Vacuum Energy

Our definition of vacuum energy density was

(To5), (M)
pvac(M) = p/\(M) + %7 (21)

from it, comparing two different scales we can deduce the
following formula (in terms of the cosmic time)

M2
2 2
pvac(M) = Pvac(Mo) + — 167 P (f *) H |:M MO m In VOQ
. (22)
M2

- N iy
167T2 (5—7> (H? — 2HH — 6H*H) In

This result relates the renormalized result at two different
energy scales, M and Mj.
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RVM connection

- o For instance let's fix My = My, where Mx ~ 1019GeV is
Moreno a GUT scale and is also associated to the inflationary scale

and M = Hy, at today's value of Hubble parameter:
o Neglecting O(Hg) (late universe) terms we are left with

303 120 g2
pvac(MX) = pvac(HO) - 8_7THO MP7 (23)
M2 2 H?
where 19 = L (3 —¢) M_)é (1 - E_i In ﬁé)

o The sign of 1% not only depend on &, should be

Renormalized

Vacuum determined by data.
S fmd o For a generical value of the Hubble parameter we may
connection Write
310 M3
pvac(H) ~ pvac(HO) + %(fp - Hg), (24)
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RVM connection

More geometric structures for vacuum in curved spacetime:

o We can postulate more generical expression for Tlf;'jc,
Tlsc = —pvac8uw — 1Rgu, — 2Ry + - - (25)
@ That lead us to

3v 3v
prac(H) % pOoc+ I (H2 — H3) + 22 (H— ), (26)

Renormalized 87TGN 87TG

Vacuum

Energy and I\/I2

RVM where vesr 1 and veg > are proportional to /\//2' as before.

connection
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Conclusion & remaining work

@ The renormalized value of py.c(M) has been obtained
from this QFT calculation instead of a generic
renormalization group argument.

o We avoid the ~ m* problem by considering the difference
between two different scales.

@ A richer phenomenology can be obtained from different
relations between (T3§¢) and pyac, for instance including
an additional term proportional to H.

o Can we generalize these results to other fields (fermions)?

Conclusions &
remaining
work
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