Dark matter-dark energy interactions and their cosmological implications

Matteo Lucca Université Libre de Bruxelles (ULB)

Based on Lucca & Hooper 2020 [2002.06127] and Lucca 2021a [2105.09249]

Presentation for the 16th Marcel Grossmann Meeting

The model

Matteo Lucca

The model	H_0 tension	S_8 tension	Summary
			00

Dark matter-dark energy interactions:

Main difference with respect to ACDM: DM and DE energy densities not conserved singularly but coupled via an energy transfer function Q

$$\dot{\rho}_c + 3H\rho_c = Q$$
 and $\dot{\rho}_x + 3H\rho_x(1+w_x) = -Q$

Many possible choices for coupling function due to large freedom in the phenomenology of the interaction

$$\mathcal{L} = rac{1}{2} \partial^\mu arphi \partial_\mu arphi - V(arphi) + i ar \psi \partial \!\!\!/ \psi + M(arphi) ar \psi \psi \,,$$

where $V(\varphi)$ is the scalar field potential and $M(\varphi)$ is a time-varying mass term describing the interaction between the fields. $\rightarrow Q$ can be shown to be a function of $V(\varphi)$ and $M(\varphi)$, and inherits therefore the same freedom

Matteo Lucca

The model	H ₀ tension	S_8 tension	
00000	000	000	

- Intuitive approach: dependence on the fluids' energy densities and H
- One of the most stable and successful options is $Q = \xi H \rho_x$ (Gavela et al. '09, '10 [0901.1611, 1005.0295], Di Valentino et al. '17, '19 [1704.08342, 1908.04281], see also David Wands' talk for alternatives), with clear cosmological meaning: from $\dot{\rho}_x = -Q$ (with $w_x \simeq -1$) and $\rho_x = \Lambda/(8\pi G)$ one has that

$$Q = -\dot{\Lambda}/(8\pi G) = \xi H
ho_x$$

if $\Lambda = \Lambda_0 (1 + z)^{\xi}$ and not constant as in ΛCDM .

- As a consequence of this choice:
 - 1. If ξ is zero: one recovers ACDM
 - If ξ is negative: the energy flows from the DM to the DE (iDMDE model)
 - If ξ is positive: the energy flows from the DE to the DM (iDEDM model)

tension . D	S ₈ tension 000	Summary 00
t >	ension	ension S ₈ tension 000

► If ξ is negative (positive) Ω_c increases (decreases) in the past with respect to Λ CDM, while Ω_x decreases (increases)

- ▶ The Hubble parameter increases (decreases) during the MD epoch
- The redshift of matter-radiation equality z_{eq} increases (decreases)

I he model 0000●	H ₀ tension 000	S ₈ tension	Summary 00
Whe	en ξ is negative:		
1.	Ω_c needs to be lowered to	preserve a good fit to th	ne data
2.	The last-scattering distance	the $r_a(z_d) = \int_0^{z_d} \mathrm{d}z / H(z)$	with
	$H(-) \sim H(0(-) + 0(-)$	$))^{1/2}$ needs to stay const	ant bacauca

- $H(z) \simeq H_0 (\Omega_c(z) + \Omega_x(z))^{1/2}$ needs to stay constant because the sound horizon $r_s(z_d)$ is (almost) unmodified and the angular scale of the sound horizon $\theta_s = r_s(z_d)/r_a(z_d)$ is fixed
- 3. Since $\Omega_x(z)$ can decrease very rapidly H_0 can be increased
- \rightarrow iDMDE model potentially good candidate to solve H_{0} tension
- When ξ is positive:
 - 1. Ω_c needs to be increased but only to a point where z_{eq} can still decrease
 - 2. In this way the scale of matter-radiation equality $k_{eq} \propto \sqrt{\omega_m(1+z_{eq})}$ and therefore the amplitude of the matter power spectrum can do so too
 - 3. S_8 can be lowered
 - \rightarrow iDEDM model potentially good candidate to solve ${\it S}_8$ tension

4/9

DM-DE interactions as a solution to the *H*₀ tension (the iDMDE model)

Matteo Lucca

The model	H_0 tension	S ₈ tension	Summary
00000	$0 \bullet 0$	000	00

Generalities of late-time "solutions":

- CMB anisotropy data alone unsuitable to constrain late-time modifications of ACDM (only effect is to enlarge error bars)
- Fundamental to consider at least BAO and SNIa data, which have however been shown to strongly prefer ACDM over late-time variations of the expansion history (Poulin et al. '18 [1803.02474], see also Eleonora Di Valentino's talk)
- Additional intrinsic inability to lower sound horizon (Bernal et al. '16 [1607.05617], Millea & Knox '19 [1908.03663])

Adapted from Poulin et al. '18 [1803.02474]

5/9

Emergence of general no-go theorem for late-time solutions (see David Wands' talk)

The model	H_0 tension	S ₈ tension	Summary
00000		000	00

For the specific case of DM-DE interactions:

- No-go theorem still applies
- DM-DE interactions are therefore not a successful solution

6/9

Matteo Lucca

DE-DM interactions as a solution to the S₈ tension (the iDEDM model)

 S_8 tension

Matteo Lucca

The model 00000	H ₀ tension 000	S_8 tension 000	Summary 00
5			

Recap:

- When ξ is positive $\Omega_c(z)$ is lower in the past compared to ACDM
- The redshift of matter-radiation equality decreases
- Shift of the peak of the matter power spectrum to lower values and overall suppression of the amplitude (in particular for k > k_{eq})

7/9

Matteo Lucca

8/9

Successful solution (tension below 1.5σ once all data is included)

 Without worsening nor introducing any other tension and without worsening fit to data

Summary

Matteo Lucca

The model	H ₀ tension	S ₈ tension	Summary
00000	000	000	○●

Summary:

- DM-DE interactions can be motivated at a very fundamental level and present large phenomenological freedom
- A very appealing choice assumes a coupling of the form $Q = \xi H \rho_x$
- This interacting model could in principle solve both the H₀ and the S₈ tensions depending on the sign of the coupling parameter ξ
- The model fails to successfully solve the H₀ tension when ξ is negative because of a broad *no-go theorem* against late-time models
- It can however significantly reduce the S₈ tension when ξ is positive without worsening other tensions nor the fit to the data
- Possible seed for more inclusive interacting models (see e.g., Lucca '21b [2106.15196])