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ABSTRACT
We present an improved measurement of the Hubble constant (H0) using the ‘inverse
distance ladder’ method, which adds the information from 207 Type Ia supernovae
(SNe Ia) from the Dark Energy Survey (DES) at redshift 0.018 < z < 0.85 to existing
distance measurements of 122 low redshift (z < 0.07) SNe Ia (Low-z) and measure-
ments of Baryon Acoustic Oscillations (BAOs). Whereas traditional measurements
of H0 with SNe Ia use a distance ladder of parallax and Cepheid variable stars, the
inverse distance ladder relies on absolute distance measurements from the BAOs to
calibrate the intrinsic magnitude of the SNe Ia. We find H0 = 67.8± 1.3 km s�1 Mpc�1

(statistical and systematic uncertainties, 68% confidence). Our measurement makes
minimal assumptions about the underlying cosmological model, and our analysis was
blinded to reduce confirmation bias. We examine possible systematic uncertainties and
all are below the statistical uncertainties. Our H0 value is consistent with estimates
derived from the Cosmic Microwave Background assuming a ⇤CDM universe (Planck
Collaboration et al. 2018).

Key words: cosmology: observations – cosmology: cosmological parameters – cos-
mology: distance scale
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photons, the e↵ect is most significant for high redshift su-
pernovae (e.g. Scovacricchi et al. 2016).

Gunnarsson et al. (2006) considered correcting for the
lensing dispersion in the Hubble diagram by estimating the
magnification e↵ect from large scale structure, and Jönsson
et al. (2010) considered using supernovae magnification to
constrain the properties of the lensing dark matter haloes.
Collett et al. (2013) considered modelling the line of sight
lensing signal to improve time delay measurements. Smith
et al. (2014) tested for lensing magnification with 608 super-
novae from the Sloan Digital Sky Survey by cross-correlating
the magnitude residuals with the expected lensing signal
from foreground galaxies. Although the significance of the
cross-correlation was low at the 1.4 standard deviation con-
fidence level, the correlation suggests that lensing provides
some contribution to the distances measured with super-
novae.

Dodelson & Vallinotto (2006) proposed using the dis-
persion in the Hubble diagram due to weak lensing to mea-
sure �8, but noted that the Gaussian model used in their
work can be biased towards incorrect values of �8 due to the
non-Gaussian nature of the lensing dispersion. In a series of
papers, Marra, Quartin & Amendola (2013) and Quartin,
Marra & Amendola (2014) developed a method to measure
�8 from the e↵ect of lensing magnification on the magni-
tude residuals of supernovae (called Method-of-the-Moments
– MeMo). In Castro & Quartin (2014), the MeMo tech-
nique was applied to the JLA and Union2 supernovae cat-
alogues, finding �8 = 0.84+0.28

�0.65 at the 68% confidence level,
or �8 < 1.45 at the 95% confidence level.

In Castro, Quartin & Benitez-Herrera (2016), the
MeMo lensing likelihood was combined with a peculiar ve-
locity likelihood. These two di↵erent physical e↵ects were
combined by using a peculiar velocity likelihood for super-
novae with redshift z < 0.1, and the lensing-only MeMo like-
lihood for higher redshifts. This approach has the advantage
that correlations between supernovae from large scale bulk
flows can be modeled in the velocity likelihood, but does
not model the combined e↵ect of the two di↵erent kinds of
perturbations on the moments. Castro, Quartin & Benitez-
Herrera (2016) allowed both �8 and the perturbation growth
index � to vary, finding the best-fitting �8 = 0.65+0.23

�0.37, with
� = 1.35+1.7

�0.65. Keeping � fixed at the expected value in GR
of 0.55, the best-fitting value of �8 was 0.40+0.21

�0.23.
Our approach to treating lensing and velocities is di↵er-

ent from that of Castro, Quartin & Benitez-Herrera (2016).
Instead of treating the two e↵ects as independent – with
two di↵erent likelihoods – we use a single likelihood that
directly combines predictions for lensing and velocities into
the expectations for the moments. The advantage of this
approach is that the total expectations for the moments in-
clude contributions for both e↵ects, which would otherwise
be underestimated.

Dodelson & Vallinotto (2006) assumed that the intrinsic
dispersion in supernova magnitudes can be modeled with a
Gaussian distribution with mean zero and a standard devia-
tion that is independent of redshift. Castro & Quartin (2014)
relaxed this assumption somewhat by allowing the intrinsic
dispersion to be further modeled with intrinsic third and
fourth moments (although also constant in redshift). In both
papers, the only variation in the distribution of residuals was
assumed to be due to perturbations in the metric, as a func-

tion of �8. In reality, the intrinsic dispersion in the magni-
tudes of supernovae may vary with redshift, and may not be
Gaussian. For example, Malmquist bias may a↵ect the distri-
bution of fainter residuals, sub-populations of di↵erent types
of Ia supernovae may skew the intrinsic dispersion, or cor-
relations with host-galaxy evolution may introduce redshift
dependence (e.g. Howell et al. 2009; Lampeitl et al. 2010;
Sullivan et al. 2010; Kelly et al. 2010; Campbell, Fraser &
Gilmore 2016). Singh et al. (2016) tested the Hubble residu-
als of recent supernova data with the Kolmogorov Smirnov
test, and found the residuals to be consistent with a Gaus-
sian distribution. Castro & Quartin (2014) tested models of
the intrinsic dispersion that are both constant and vary with
redshift, and found that the Bayesian evidence favoured a
model for the intrinsic dispersion that is constant in redshift.

In this work, we aim to place limits on cosmological
density fluctuations via the e↵ects of peculiar velocities and
lensing magnification on moments of the Hubble diagram.
We verify the MeMo lensing likelihood on simulated cata-
logues from the MICE light cone simulation. We include the
e↵ects of peculiar velocities directly into the moments like-
lihood, as opposed to including velocities with a separate
likelihood. In Section 2 we describe the physical model of
the moments, based on the e↵ects of peculiar velocities and
lensing magnification. In Section 3 we review the JLA cat-
alogue and the simulated realizations of the catalogue that
we generate. In Section 4 we describe our techniques to mea-
sure the moments and estimate the data covariance matrix.
In Section 5 we present the results of fitting for the lensing
and velocity models to the JLA catalogue, and compare our
results to other analyses. In Section 6, we summarize our
main conclusions.

2 MODELLING THE EFFECTS OF
STRUCTURE ON SUPERNOVA
MAGNITUDES

Throughout this paper we assume a flat ⇤CDM model.
We consider the perturbed Friedmann-Lemâıtre-Robertson-
Walker metric, given by

ds
2 = �a

2(1 + 2 )d⌘2 + a
2(1� 2�)dx2

, (1)

where  represents time-like perturbations to the metric,
and � represents space-like perturbations. In the case of
CDM and GR, the two potentials are equal, and so any de-
parture from  = � may suggest physics beyond ⇤CDM.
Traditionally, supernovae have been used to probe only the
history of the scale factor, a, by measuring the distance mod-
ulus, µ (in Mpc)

µ = 25 + 5 log10 (DL) , (2)

where, for a flat universe, the luminosity distanceDL is given
by

DL = (1 + zobs)

Z
dz

c

H(z)
(3)

where z is the cosmological redshift (i.e., without a peculiar
velocity), and zobs is the redshift including the additional
Doppler shift due to the peculiar velocity. In order to fully
constrain the physics of the dark Universe, we must also
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Instead, our approach is to include the additional dis-
persion from peculiar velocities directly into the moments
analysis. The advantage of this approach is that the ad-
ditional dispersion (that is greater than the lensing e↵ect
for z < 0.4) can be directly accounted for in the moments
analysis. The disadvantage is that correlations in magni-
tudes cannot be included – we are e↵ectively modelling only
the diagonal component of the distance modulus covariance
matrix. However, we find that the full velocity covariance
matrix given by equation (4) is dominated by the diagonal
component. For z > 0.1, the correlations between the super-
novae are almost entirely negligible. Moreover, this approach
allows us to correctly calculate the total e↵ect on the mo-
ments due to lensing and velocities.

The ith moment µi of a variable µ is defined as

µi ⌘
D
(µ� hµi)i

E
, (17)

or, equivalently,

µi =

Z
dµ(µ� hµi)iP (µ), (18)

where hµi is the mean of the distribution and P (µ) is the
probability distribution of µ. The MeMo likelihood is given
by

L = exp

 
�1
2

X

j

�
2
j

!
, (19)

where j is a sum over redshift bins. Within each redshift
bin, the �

2 is given by

�
2 = (µ� µfid)

tC�1(µ� µfid), (20)

where C is the data covariance matrix in the jth redshift
bin.

We use the same redshift binning as Castro & Quartin
(2014), with equally spaced bins of �z = 0.1, to a maximum
of z = 0.9, and find that the results are not significantly af-
fected by the redshift binning. We use the ensemble sampler
emcee (Foreman-Mackey et al. 2013) to probe the posterior
distribution of the parameters. Since the covariance matrix
is estimated from the data, and does not depend on the pa-
rameters that are fitted, equation (19) does not depend on
the determinant of the covariance matrix. We describe our
method to estimate the covariance matrix in Section 4.2.

Here, µ is a vector of the observed first four moments
of the distance moduli within the redshift bin

µ = {µ1, µ2, µ3, µ4}, (21)

and µfid is the corresponding vector of theoretical expec-
tations for the moments. The second moment is given by

µ2 = �
2
I + �

2
L + �

2
V, (22)

where �L is the lensing dispersion, �V is the velocity dis-
persion, and �I is the intrinsic dispersion in supernova mag-
nitudes. The non-linear velocity dispersion �⇤ can also be
added in quadrature to this expression, although we find
that including this parameter has only a small e↵ect on the
results. We assume that �I is constant, and independent of
redshift. The third moment is given by

µ3 = µ3,L + µ3,I, (23)

where µ3,L is the contribution due to lensing, and we also
allow an intrinsic µ3,I to vary. Due to isotropy, we would ex-
pect large scale structure to cause peculiar velocities moving
equally towards or away from the line of sight. As such we
would not expect peculiar velocities to preferentially mag-
nify or de-magnify, so we do not include a contribution to
the third moment from velocities. We verify that velocities
do not contribute to the skewness of the residuals in Fig. 1.
The fourth moment is given by

µ4 = µ4,L + µ4,I + 3µ2
2 � 3�4

L, (24)

where, as before, µ4,L are the intrinsic and lensing contri-
butions to the moment µ4,I. We subtract the 3�4

L term so
that the equation reduces to equation 11 in Quartin, Marra
& Amendola (2014) in the absence of additional contribu-
tions from velocities. The e↵ect of the velocities a↵ects the
moment via the 3µ2

2 term. We calculate �V and �⇤ from
equations (11) and (10). For the lensing moments, we use
fitting functions given by equations 6, 7 and 8 in Marra,
Quartin & Amendola (2013), which have been calibrated to
N -body simulations for a range of cosmological parameters.

For µ1, we use equation (2) to calculate the expected
distance modulus from the observed supernovae. In Fig. 1
we compare the moments of the distribution of magnitude
residuals. We note that the model for the second moment
agrees with the theoretical modelling from Ben-Dayan et al.
(2013a).

3 SUPERNOVA DATA & SIMULATIONS

Throughout this paper, we consider distances measured with
the JLA supernova catalogue (Betoule et al. 2014). We cal-
culate the observed distance modulus using

µ = m
?
B � (MB � ↵X1 + �C), (25)

where X1 is the stretch parameter of the light curve and C

is the colour parameter. m?
B is the observed B-band peak

magnitude. We also apply a stellar mass correction,

MB = M
1
B +�M , (26)

for Mstellar > 1010M�. We calculate the distance modulus
for the best-fitting values from Betoule et al. (2014) of ↵,
�, MB and �M , given by ↵ = 0.141, � = 3.101, MB =
�19.05, and �M = �0.07. The residuals of these distance
moduli (after a best-fitting cosmology has been subtracted)
are shown in Fig. 2. The error bars are the square-root of the
diagonal of the covariance matrix. We use these uncertainties
to weight our estimates of the central moments.

The publicly available redshifts from Betoule et al.
(2014) are the observed heliocentric redshift, zhel, and the
heliocentric corrected, CMB rest frame redshift, zcmb. How-
ever, the zcmb have also been adjusted to subtract the e↵ect
of peculiar velocities, which have been estimated from lo-
cal density fields. For our analysis, these peculiar velocities
are a signal, not a nuisance. To recover the heliocentric cor-
rected redshifts without the additional peculiar velocity cor-
rections, we take the zhel and subtract only the heliocentric
correction.
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density fluctuations via the e↵ects of peculiar velocities and
lensing magnification on moments of the Hubble diagram.
We verify the MeMo lensing likelihood on simulated cata-
logues from the MICE light cone simulation. We include the
e↵ects of peculiar velocities directly into the moments like-
lihood, as opposed to including velocities with a separate
likelihood. In Section 2 we describe the physical model of
the moments, based on the e↵ects of peculiar velocities and
lensing magnification. In Section 3 we review the JLA cat-
alogue and the simulated realizations of the catalogue that
we generate. In Section 4 we describe our techniques to mea-
sure the moments and estimate the data covariance matrix.
In Section 5 we present the results of fitting for the lensing
and velocity models to the JLA catalogue, and compare our
results to other analyses. In Section 6, we summarize our
main conclusions.

2 MODELLING THE EFFECTS OF
STRUCTURE ON SUPERNOVA
MAGNITUDES

Throughout this paper we assume a flat ⇤CDM model.
We consider the perturbed Friedmann-Lemâıtre-Robertson-
Walker metric, given by

ds
2 = �a

2(1 + 2 )d⌘2 + a
2(1� 2�)dx2

, (1)

where  represents time-like perturbations to the metric,
and � represents space-like perturbations. In the case of
CDM and GR, the two potentials are equal, and so any de-
parture from  = � may suggest physics beyond ⇤CDM.
Traditionally, supernovae have been used to probe only the
history of the scale factor, a, by measuring the distance mod-
ulus, µ (in Mpc)

µ = 25 + 5 log10 (DL) , (2)

where, for a flat universe, the luminosity distanceDL is given
by

DL = (1 + zobs)

Z
dz

c

H(z)
(3)

where z is the cosmological redshift (i.e., without a peculiar
velocity), and zobs is the redshift including the additional
Doppler shift due to the peculiar velocity. In order to fully
constrain the physics of the dark Universe, we must also

c� 2016 RAS, MNRAS 000, 000–000

eg., Feeney et al (2018)
arXiv: 1802.03404
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Take Home Points

§ Inverse Distance Ladder value of H0
consistent with Planck+ΛCDM

§ CMB: the value of rd is not sensitive to 
late-time cosmology

§ Statistical & systematic uncertainties not 
enough to reconcile with Distance 
Ladder measurements

§ Robust to distance-redshift model and 
Planck/WMAP
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Speculation(?)

§ Difficult to reconcile 
observations with a single 
explanation.

§ Several different 
observational effects?

§ Are H0 and σ8 tensions 
related? 

§ Single theoretical 
explanation, or just different 
phenomena?
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