BD-ACDM and Running Vacuum Models: Theoretical background and current observational status

Javier de Cruz Pérez

Department of Physics, Kansas State University

July 7, 2021

Based on the works: arXiv:2006.04273 (CQG 37 (2020) 24, 245003) and arXiv:2106.1496 (EPL 134 (2021) 1, 19001). Work done in collaboration with Joan Solà Peracaula, Adrià Gómez-Valent and Cristian Moreno-Pulido.

Table of contents

Theoretical background of the BD-gravity

Connection with the Running Vacuum Models

Theoretical background of the RVM

Cosmological data and numerical results

Conclusions

Brans and Dicke model

The most important features of the Brans and Dicke (BD) theory

- It is a particular type of scalar-tensor theory.
- Gravity is mediated by the metric tensor field and also by a scalar field.
- G_N is replaced by that scalar field $G(t) = 1/\psi(t) = G_N/\varphi(t)$.
- The theory contains a dimensionless parameter ω_{BD} and General Relativity can be retrieved in the limit $\omega_{BD} \to \infty$ and $\varphi \to 1$.

BD action and the field equations

The action in the Jordan frame reads

$$S_{
m BD} = \int d^4 x \sqrt{-g} \left[rac{1}{16\pi} \left(R \psi - rac{\omega_{
m BD}}{\psi} g^{\mu
u} \partial_\mu \psi \partial_
u \psi
ight) -
ho_{\Lambda}
ight] + S_m.$$

The variation with respect to the metric yields

$$\begin{split} \psi G_{\mu\nu} + \left(\Box \psi + \frac{\omega_{\rm BD}}{2\psi} g^{\mu\nu} \nabla_{\mu} \psi \nabla_{\nu} \psi \right) g_{\mu\nu} - \nabla_{\mu} \nabla_{\nu} \psi - \frac{\omega_{\rm BD}}{\psi} \nabla_{\mu} \psi \nabla_{\nu} \psi \\ = 8\pi \left(T_{\mu\nu} - g_{\mu\nu} \rho_{\Lambda} \right) \end{split}$$

whereas the variation with respect to the scalar field

$$\Box \psi = \frac{8\pi}{2\omega_{\rm BD}+3}(T-4\rho_{\Lambda})$$

Cosmological equations for BD gravity

For convenience we will use the following definitions $\varphi(t) \equiv G_N \psi(t)$ and $\epsilon_{\rm BD} \equiv \frac{1}{\omega_{\rm BD}}$. In the spatially flat FLRW metric, $ds^2 = -dt^2 + a^2(t)\delta_{ij}dx^i dx^j$, the cosmological equations can be written as: (The dots represent derivative *w.r.t.* the cosmic time)

$$3H^{2} + 3H\frac{\dot{\varphi}}{\varphi} - \frac{1}{2\epsilon_{\rm BD}}\left(\frac{\dot{\varphi}}{\varphi}\right)^{2} = \frac{8\pi G_{N}}{\varphi}\rho$$
$$2\dot{H} + 3H^{2} + \frac{\ddot{\varphi}}{\varphi} + 2H\frac{\dot{\varphi}}{\varphi} + \frac{1}{2\epsilon_{\rm BD}}\left(\frac{\dot{\varphi}}{\varphi}\right)^{2} = -\frac{8\pi G_{N}}{\varphi}\rho$$
$$\ddot{\varphi} + 3H\dot{\varphi} = \frac{8\pi G_{N}\epsilon_{\rm BD}}{2 + 3\epsilon_{\rm BD}}(\rho - 3\rho)$$

with $\rho \equiv \rho_m + \rho_\gamma + \rho_\nu + \rho_\Lambda$ and $p \equiv p_m + p_\gamma + p_\nu + p_\Lambda$.

$$\dot{\rho}+3H(\rho+p)=\sum_{N}[\dot{\rho}_{N}+3H(\rho_{N}+p_{N})]=0$$

Cosmological perturbations

To study the evolution of the perturbations we have to consider $\varphi = \bar{\varphi} + \delta \varphi$. At deep subhorizon scales we can obtain the differential equation for the matter density contrast $\delta_m \equiv \delta \rho_m / \bar{\rho}_m$

$$\delta_m^{\prime\prime} + \left(\frac{3}{a} + \frac{H^\prime(a)}{H(a)}\right)\delta_m^\prime - \frac{4\pi}{H^2(a)}\frac{G_N}{\bar{\varphi}}\left(\frac{2+4\epsilon_{\rm BD}}{2+3\epsilon_{\rm BD}}\right)\frac{\bar{\rho}_m}{a^2}\delta_m = 0.$$

It is possible to define

$$G_{\mathrm{eff}} = rac{G_N}{ar{arphi}} \left(rac{2+4\epsilon_{\mathrm{BD}}}{2+3\epsilon_{\mathrm{BD}}}
ight)$$

Can the CC be seen as a dynamical quantity in the BD framework ?

We can approximate the evolution of φ from the MDE as:

$$\varphi(a) = \varphi_0 a^{-\epsilon} \quad (|\epsilon| \ll 1).$$

Plugging this ansatz into the cosmological equations and neglecting terms of order $\mathcal{O}(\epsilon^2)^1$

$$H^{2}(a) = \frac{8\pi G_{N}}{3\varphi_{0}} \left(\rho_{m}^{0} a^{-3+\epsilon} + \rho_{\mathrm{DE}}(H)\right)$$
$$\frac{\ddot{a}}{a} = -\frac{4\pi G_{N}}{3\varphi_{0}} \left(\rho_{m}^{0} a^{-3+\epsilon} + \rho_{\mathrm{DE}}(H) + 3p_{\Lambda}\right)$$

¹For more details see J. Solà IJMP D27 (2018) 14, JdCP and J. Solà 1847029 and MPLA 33 (2018) 38, 1850228.

being the effective DE density

$$ho_{
m DE}(H) =
ho_{\Lambda} + rac{3
u_{
m eff}arphi_0}{8\pi\,G_N}H^2$$

with

$$\nu_{\rm eff} \equiv \epsilon \left(1 + \frac{1}{6} \omega_{\rm BD} \epsilon \right). \label{eq:number-eff}$$

We can compute the effective EoS parameter defined as:

$$w_{ ext{eff}}(z) = rac{p_\Lambda}{
ho_{ ext{DE}}(H)} \simeq -1 + rac{3
u_{ ext{eff}}arphi_0}{8\pi G_N
ho_\Lambda} H^2(z) = -1 + rac{
u_{ ext{eff}}}{\Omega_\Lambda} rac{H^2(z)}{H_0^2}$$

Running Vacuum Models

In analogy with the Renormalization Group equation we can consider the following expression which contains the Quantum effects that make the vacuum energy density a dynamical quantity $_2$

$$\frac{d\rho_{\rm vac}}{d\ln\mu^2} = \frac{1}{4\pi^2} \sum_i \left[a_i M_i^2 \mu^2 + b_i \mu^4 + c_i \frac{\mu^6}{M_i^2} + \dots \right]$$

Identifying the running scale with $\mu \sim H^2 + \dot{H}$ and integrating the above expression we end up with:

$$\rho_{\rm vac}(H) = \frac{3}{8\pi G_N} \left(c_0 + \nu H^2 + \tilde{\nu} \dot{H} \right) + \mathcal{O}(H^4)$$

²See I.L. Shapiro and J. Solà, JHEP 0202 (2002) 006, J. Solà, J. Phys. A41 (2008) 164066 and I.L. Shapiro and J. Solà, Phys. Lett. B682 (2009) 105, C. Moreno-Pulido and J. Solà, Eur.Phys.J.C. 80 (2020) 8, 692.

By imposing the relation $\tilde{\nu} = \nu/2$ and employing the definition of the Ricci scalar in the FLRW metric, $\mathcal{R} = 12H^2 + 6\dot{H}$ we have

$$\rho_{\rm vac} = \frac{3}{8\pi G_N} \left(c_0 + \frac{\nu}{12} \mathcal{R} \right).$$

To allow the evolution of the vacuum component, not present in the standard model, we need to consider an extra ingredient.

Type I RRVM

In this scenario the CDM is in interaction with vacuum

$$\dot{\rho}_{dm} + 3H\rho_{dm} = -\dot{\rho}_{\rm vac}.$$

Neglecting the contribution of massive neutrinos in front of the one of CDM+baryons:

$$\rho_{dm}(a) = \rho_m^0 a^{-3\xi} - \rho_b^0 a^{-3}$$
$$\rho_{vac}(a) = \rho_{vac}^0 + \left(\frac{1}{\xi} - 1\right) \rho_m^0 \left(a^{-3\xi} - 1\right)$$

where

$$\xi\equivrac{1-
u}{1-rac{3}{4}
u}\simeq 1-rac{
u}{4}+\mathcal{O}(
u^2)\equiv 1-
u_{ ext{eff}}+\mathcal{O}(
u_{ ext{eff}}^2).$$

Threshold redshift scenario for type I model

We keep deactivated the interaction between vacuum and CDM for most of the cosmic history until the late time. We model this situation as:

 $a < a_*$

$$\begin{split} \rho_{dm}(a) &= \rho_{dm}(a_*) \left(\frac{a}{a_*}\right)^{-3} \\ \rho_{\mathrm{vac}} &= \rho_{\mathrm{vac}}^0 + \left(\frac{1}{\xi} - 1\right) \rho_m^0 \left(a_*^{-3\xi} - 1\right) \end{split}$$

 $a > a_*$

$$\begin{split} \rho_{dm}(\textbf{a}) &= \rho_m^0 \textbf{a}^{-3\xi} - \rho_b^0 \textbf{a}^{-3} \\ \rho_{\text{vac}}(\textbf{a}) &= \rho_{\text{vac}}^0 + \left(\frac{1}{\xi} - 1\right) \rho_m^0 \left(\textbf{a}^{-3\xi} - 1\right) \end{split}$$

being the constant

$$\rho_{dm}(a_*) = \rho_m^0 a_*^{-3\xi} - \rho_b^0 a_*^{-3}.$$

Type II RRVM

In this scenario matter evolve in the standard way, however vacuum can still evolve due to the dynamics of the gravitational coupling, $\varphi(H) \equiv G_N/G(H)$

$$\frac{\dot{\varphi}}{\varphi} = \frac{\dot{\rho}_{\mathrm{vac}}}{\rho_t + \rho_{\mathrm{vac}}}.$$

The approximate behaviour of the vacuum term close to the present time is

$$ho_{
m vac}(a)\simeq ar{C}(1+4
u_{
m eff})+
u_{
m eff}
ho_m^0a^{-3}$$

regarding the gravitational coupling

$$\varphi \sim a^{-\epsilon} \simeq 1 - \epsilon \ln(a) \quad 0 < \epsilon \ll 1.$$

Cosmological perturbations

The dynamics of the vacuum energy density affects nontrivially the cosmological perturbations. If we consider the perturbed metric $ds^2 = -dt^2 + (\delta_{ij} + h_{ij})dx^i dx^j$, the modified equation for CDM takes the form

$$\dot{\delta}_{dm} + rac{h}{2} - rac{\dot{
ho}_{
m vac}}{
ho_{dm}} \delta_{dm} = 0,$$

where h is the trace of h_{ij} .

Cosmological data

The data employed in the analysis:

- SNIa: We use the full Pantheon likelihood Pantheon, which contains 1048 SNIa in addition to 207 SNIa more from the DES survey.
- **BAO**: We use data on both isotropic and anisotropic BAO, covering the redshift range $z \sim 0.122-2.334$.
- **Cosmic Chronometers**: 31 data points on $H(z_i)$.
- **CMB**: We consider the full likelihood Planck 2018 TT+lowE.
- **LSS**: A set of $f(z_i)\sigma_8(z_i)$ data points in a redshift range $z \sim 0.035-1.48$.
- Prior on H_0 : The Hubble parameter measured by the SH0ES team collaboration $H_0 = (73.5 \pm 1.4)$ km/s/Mpc obtained with the cosmic distance ladder method.

Numerical results (Baseline)

Baseline										
Parameter	GR-ACDM	type I RRVM	type I RRVM _{thr.}	type II RRVM	BD-ACDM					
$H_0(km/s/Mpc)$	$68.37^{+0.38}_{-0.41}$	$68.17^{+0.50}_{-0.48}$	$67.63^{+0.42}_{-0.43}$	$69.02^{+1.16}_{-1.21}$	$69.30^{+1.38}_{-1.33}$					
ω_b	$0.02230^{+0.00019}_{-0.00018}$	$0.02239^{+0.00023}_{-0.00024}$	$0.02231^{+0.00020}_{-0.00019}$	$0.02245^{+0.00025}_{-0.00027}$	0.02248 ± 0.00025					
ω_{dm}	$0.11725^{+0.00094}_{-0.00084}$	$0.11731^{+0.00092}_{-0.00087}$	$0.12461^{+0.00201}_{-0.00210}$	$0.11653^{+0.00158}_{-0.00160}$	$0.11629^{+0.00148}_{-0.00151}$					
ν_{eff}	-	$0.00024^{+0.00039}_{-0.00040}$	$0.02369^{+0.00625}_{-0.00563}$	0.00029 ± 0.00047	-					
$\epsilon_{\rm BD}$	-	-	-	-	$-0.00109\pm^{+0.00135}_{-0.00141}$					
$\varphi_{\rm ini}$	-	-	-	$0.980^{+0.031}_{-0.027}$	$0.972^{+0.030}_{-0.037}$					
φ_0	-	-	-	$0.973^{+0.036}_{-0.033}$	$0.963^{+0.036}_{-0.041}$					
$\tau_{\rm reio}$	$0.049^{+0.008}_{-0.007}$	$0.051^{+0.008}_{-0.009}$	$0.058^{+0.007}_{-0.009}$	0.051 ± 0.008	0.051 ± 0.008					
ns	$0.9698^{+0.0039}_{-0.0036}$	$0.9716^{+0.0044}_{-0.0047}$	0.9703 ± 0.038	$0.9762^{+0.0081}_{-0.0091}$						
σ_8	0.796 ± 0.007	$0.789^{+0.013}_{-0.014}$	$0.768^{+0.010}_{-0.009}$	$0.791^{+0.013}_{-0.012}$	$0.790^{+0.013}_{-0.012}$					
<i>S</i> ₈	0.796 ± 0.011	$0.791^{+0.014}_{-0.013}$	$0.797^{+0.012}_{-0.011}$	$0.781^{+0.021}_{-0.020}$	$0.777^{+0.021}_{-0.022}$					
rs (Mpc)	$147.90^{+0.30}_{-0.31}$	$147.99^{+0.35}_{-0.36}$	147.81 ± 0.30	$146.30^{+2.39}_{-2.30}$	$145.72^{+2.44}_{-2.90}$					
χ^2_{min}	2290.20	2289.72	2272.44	2288.74	2289.40					
ΔDIC	-	-2.70	+13.82	-4.59	-3.53					

The mean values and 68.3% confidence limits for the models under study using our Baseline dataset. We display the fitting values for the usual parameters and a couple of useful derived parameters. For all the RRVM's we show $u_{
m eff}$, and for the type II and BD-ACDM we also report the initial and current values of $arphi, arphi_{
m ini}$ and $arphi_0$, respectively. We provide the corresponding values of χ^2_{min} and Δ DIC.

Numerical results (Baseline+ H_0)

Parameter	GR-ACDM	type I RRVM	type I RRVM _{thr.}	type II RRVM	BD-ACDM					
H ₀ (km/s/Mpc)	$68.75^{+0.41}_{-0.36}$	68.77 ^{+0.49} -0.48	$68.14^{+0.43}_{-0.41}$	70.93 ^{+0.93} _{-0.87}	71.23 ^{+1.01} -1.02					
ω_b	$0.02240^{+0.00019}_{-0.00021}$	0.02238+0.00021 -0.00023	0.02243 ^{+0.00019} 0.00018	0.02269 ^{+0.00025} 0.00024	0.02267 ^{+0.00026} 0.00023					
ω_{dm}	$0.11658^{+0.00080}_{-0.00083}$	$0.11661^{+0.00084}_{-0.00085}$	0.12299+0.00197 -0.00203	$0.11602^{+0.00162}_{-0.00163}$	$0.11601^{+0.00161}_{-0.00157}$					
$ u_{\mathrm{eff}} $	-	$-0.00005^{+0.00040}_{-0.00038}$	$0.02089^{+0.00553}_{-0.00593}$	$0.00038^{+0.00041}_{-0.00044}$	-					
$\epsilon_{\rm BD}$	-	-	-	-	$-0.00130\pm^{+0.00136}_{-0.00140}$					
φ_{ini}	-	-	-	0.938+0.018 -0.024	$0.928^{+0.024}_{-0.026}$					
φ_0	-	-	-	0.930+0.022 -0.029	$0.919^{+0.028}_{-0.033}$					
$\tau_{ m reio}$	$0.050^{+0.008}_{-0.007}$	0.049 ^{+0.009} _{-0.008}	$0.058^{+0.008}_{-0.009}$	0.052 ± 0.008	0.052 ± 0.008					
ns	$0.9718^{+0.0035}_{-0.0038}$	0.9714 ± 0.0046	$0.9723^{+0.0040}_{-0.0039}$	0.9868+0.0072 -0.0074	$0.9859^{+0.0073}_{-0.0072}$					
σ_8	0.794 ± 0.007	0.795 ± 0.013	0.770 ± 0.010	$0.794^{+0.013}_{-0.012}$	$0.792^{+0.013}_{-0.012}$					
<i>S</i> ₈	$0.788^{+0.010}_{-0.011}$	0.789 ± 0.013	0.789 ± 0.011	$0.761^{+0.018}_{-0.017}$	$0.758^{+0.019}_{-0.018}$					
r _s (Mpc)	147.97 ^{+0.29} _{-0.31}	$147.94^{+0.35}_{-0.36}$	$147.88^{+0.33}_{-0.29}$	$143.00^{+1.54}_{-1.96}$	$142.24^{+1.99}_{-2.12}$					
χ^2_{min}	2302.14	2301.90	2288.82	2296.38	2295.36					
ΔDIC	-	-2.36	+10.88	+5.52	+6.25					

Baseline $+ H_0$

Same as in Table 1, but also considering the prior on $H_0 = (73.5 \pm 1.4)$ km/s/Mpc from SH0ES 3

³M.J. Reid, D.W. Pesce and A.G. Riess, ApJL 886 (2019) L27.

Figure: 1σ and 2σ contours in the H_0 - σ_8 , S_8 , $\tilde{S}_8 \equiv S_8/\sqrt{\varphi_0}$ planes and the corresponding one-dimensional posteriors for the GR- and BD- Λ CDM and the RRVM's obtained from the fitting analyses with our Baseline+ H_0 data set.

- ► The BD- Λ CDM is able to fit the different cosmological data even with a $G_{\rm eff} \sim G_N / \varphi_0$ being higher than in the GR- Λ CDM model.
- We find significant evidence that a dynamical ρ_{vac} can improve the description of the cosmological data in comparison to the ΛCDM.
- With such dynamics it is possible to loosen the σ_8 -tension.
- The type II model and the BD model can deal with the σ_8 -tension and the H_0 -tension at a time.

Thank you for your attention!