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INCIPIE; | which the gravitational impacts on

ioncom ,\utative space are thoughtfully
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= geometry T}ig resuiting spacetime metric tensor

—CO " the symmetric*GR compatible metric
ensor guv\'- and " another term comprising guv
multiplied-- by 0(¢p/h)2 squared. Towards
—= approaching _quanti"zéd sﬁacetime geometry, we -
-;;- yze the line elément and discuss on the
résulting geodesit, which- . encompasses
atceleration, jerk, and snap (jounce) of a test
a}ticlg in discretized gravitational field.
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Main Problem and Questions

* Would GUP suggest quantization for lhs of EFE?!

4 How look like the metric tensor, line metric and
& geodesic equation?




OM and GR

* QM which explains interactions through exchange of
particles is inherently probabilistic, for instance,

[——VE + V] v = fﬁﬂ
Ot

* GR describes that the gravitational interactions as
manifestation of spacetime geometry
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in which
1- g, plays a central role,

2- free particle moves along geodesics m

3- g,, governs this motion & emerges effects of gravity,

4- matter content T, affects the spacetime curvature,

_ 5- EFE describes how spacetime geometry is governed
Loy matter




GUP Minimal Length
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Noncommutation relations

- GUP

i, ;] > ik (14 Bp?)

where P = giip o and Gis 18 the Minkowski spacetime metric tensor, for instance (—, 4+, 4+, +).
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4D Metric Tensor
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where 7# = 92" /0" is the four-dimensional acceleration.




Modified Line Metric

GUP




Modified Geodesic Equation
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Modified Geodesic Equation

Our results mean that not only acceleration of a test
particle in the gravitational field is included, but also
higher derivatives as well, namely snap or jounce, x4,
which - in turn - is derived from jerk, x©),

 Acceleration, as in Einstein’s geodesic, without jerk is
just a static load, i.e. neither vibration nor transition
are allowed.

 Jerk gives the change in the force acting on that test
particle, while snap is resulted from change in the
jerk, itself.

« Both quantities are finite when vibration occurs,
especially for multi-resonant modes and for sudden
| transitions between different radii of curvature.




Summary

[Z:,D5] = 0ii b (14 Bp?), &= o1+ Bp*). i = boj,

where p? = gi;p" p" and gy; is the Minkowski spacetime metric tensor
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