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Motivation: Spectrum of cosmic ray particles
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(figure from Hanlon 2021).
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Motivation: Hillas diagram
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Size

Sites of cosmic rays depend-
ing on the size of the source
and the magnetic field inten-
sity.  Objects located below
the diagonal line are unable to
accelerate cosmic rays to the
given energy of 10%° eV. Posi-
tion of the ground based Large
Hadronic Collider (LHC) is also
shown. Various cosmic sources
can produce cosmic rays above
the limits of what laboratory ac-
celerators achieve (De Angelis

et al. 2015).
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Magnetic reconnection in ergosphere
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Koide & Arai (Apd, 2008); Lyutikov (PRD, 2011); Morozova et al. (2014)
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Relativistic particles from BH ergosphere?

Koide (ApdJ, 2004)
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Wald’s axisymmetric field

F = 3By (d€ + % d¢)

Magnetic flux surfaces (magnetic field lines lie in these
surfaces):

A D 4 :/F — const.
S

Magnetic/electric Lorentz force:
mu = g~ F.u, mu = g F.u.
Magnetic field lines (aligned case):

dr _ By
d6 By’
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Rotating black hole in vacuum, aligned magnetic field

() (b)

An axisymmetric case: (a) a = 0; a non-rotating (Schwarzschild) black hole;

(b) a = M a maximally rotating Kerr black hole — Meissner effect.
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Magnetic/electric lines of force

Magnetic lines:

dr B _F9¢ dr B Fog
dd  F.4 dop F.p

Magnetic flux (axially symmetric case):

r?2 + a? cos?f (T — ) S0

®, = 7By | — 2Mr + a® +

Expulsion of magnetic flux out of fast rotating black hole:

¢, = 0 on hemisphere r = r, a = M (“Meissner effect”).
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Rotating black hole + linear boost
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Effect of translatory motion (linear boost).
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Rotating black hole in vacuum, oblique magnetic field
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Effect of misalignement.
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Magnetic (blue) and electric (red) field lines
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Magnetic dipole in Rindler approximation

BIG BLACK HOLE, LITTLE NEUTRON STAR: MAGNETIC ... PHYSICAL REVIEW D 88, 064059 (2013)

Br.,Ju Er.on

FIG. 14 (color online). A 3D visualization of the magnetic fields lines and corresponding horizon currents J 4 (left) and electric field
lines with the corresponding horizon charges o 4 (right) for the boosted Rindler dipole. The case shown is for vy, = 0.2.

D’Orazio & Levin (Phys. Rev. D, 2013)
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Magnetic dipole in Rindler approximation
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Figure 5. Two-dimensional sections of the magnetic field lines in the vicinity of the null point (red mark) located at zo = 0.39,
yo = 5.86 and zg = 2.35. Same values of parameters as in Fig. 4|are used.
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Figure 6. Iso-contours of the magnetic field strength B in the vicinity of the null point located at zo = 0.39, yo = 5.86 and
zo = 2.35. Same values of parameters as in Fig. [4|and same section planes as in Fig. |5|are used.

Kopacek, Tahamtan & Karas (2018)
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Magnetic null points
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Field lines in equatorial plane Karas et al. (CQG, 2009, 2012)
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Conclusions

Because of the combined effect of frame
dragging and boost, a rotating BH forms

magnetic null points.

Charged particles can be efficiently
accelerated by electric field passing

through magnetic nulls.

Karas, Kopacek, & Kunneriath (2012), Classical and Quantum Gravity, 29, id. 035010

Kopacek, Tahamtan, & Karas (2018), Physical Review D, 98, id.084055
Kopacek, & Karas (2020), Astrophysical Journal, 900, id.119
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Conclusions

The Small-Sized Telescope SST-1M is a single-mirror
design with a 4 m diameter reflector (focal length of 5.6 m)
with hexagonal facets.

The camera uses silicon photomultipliers SiPM with ~ 1300
ultra-fast (time resolution 500 picoseconds) light-sensitive
pixels to convert the light into an electrical signal that is
then digitized and transmitted to record the image of the
cascade shower.

The showers generated by very high-energy ~ rays
(between a few TeV and 300 TeV) produce Cherenkov light;
it is sufficient to build small mirrors to detect the signal.




Supplementary slides — Magnetic null points
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Supplementary slides — Killing vectors

In @ vacuum spacetime generate a test-field solution of
Maxwell equations:

Sy + & =0
We define
Fu = qu;y.

Then, using the Killing equation and the definition of
Riemann tensor,

FF., =0.

)

Field invariants:

E.B=31*F,F*,  B?-FE?=1F,F".



Two examples of non-diverging elmg. test field

1. A spherically symmetric electric field. A unique solution
that is well-behaving both at » = r, and at » — oo. This
term describes a weakly charged Reissner-Nordstrom black

hole.

2. An asymptotically uniform magnetic field:

FIW — B||€z—|—BJ_€33,
l.e. F,g — —B| rsin¢,
Fry — By sin?@ — B r sinf cosf cos o,

Fys — By r? sinfcosf + B, r* sin® 0 cos ¢.
¢ f
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