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Motivation: Spectrum of cosmic ray particles
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(figure from Hanlon 2021).
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Motivation: Hillas diagram

Sites of cosmic rays depend-

ing on the size of the source

and the magnetic field inten-

sity. Objects located below

the diagonal line are unable to

accelerate cosmic rays to the

given energy of 1020 eV. Posi-

tion of the ground based Large

Hadronic Collider (LHC) is also

shown. Various cosmic sources

can produce cosmic rays above

the limits of what laboratory ac-

celerators achieve (De Angelis

et al. 2015).

16th Marcel Grossmann Meeting, “Dragging is never draggy: MAss and CHarge flows in GR” (id. #393), 5-10 July 2021 p. 3/19 – p.3



Magnetic reconnection in ergosphere

Koide & Arai (ApJ, 2008); Lyutikov (PRD, 2011); Morozova et al. (2014)
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Relativistic particles from BH ergosphere?

Koide (ApJ, 2004)
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Wald’s axisymmetric field

F =
1
2
B0

(

dξ̃ + 2J
M dξ

)

Magnetic flux surfaces (magnetic field lines lie in these
surfaces):

4πΦM =

∫

S

F = const.

Magnetic/electric Lorentz force:

mu̇ = qm
⋆
F.u, mu̇ = qeF.u.

Magnetic field lines (aligned case):

dr

dθ
=

Br

Bθ
,
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Rotating black hole in vacuum, aligned magnetic field

(a) (b)

An axisymmetric case: (a) a = 0; a non-rotating (Schwarzschild) black hole;

(b) a = M a maximally rotating Kerr black hole – Meissner effect.
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Magnetic/electric lines of force

Magnetic lines:

dr

dθ
= −

Fθφ

Frφ
,

dr

dφ
=

Fθφ

Frθ
.

Magnetic flux (axially symmetric case):

Φm = πB0

[

r2 − 2Mr + a2 +
2Mr

r2 + a2 cos2θ

(

r2 − a2
)

]

sin
2θ

Expulsion of magnetic flux out of fast rotating black hole:

Φm = 0 on hemisphere r = r+, a = M (“Meissner effect”).
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Rotating black hole + linear boost

v = 0.1 v = 0.3 v = 0.7

Effect of translatory motion (linear boost).
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Rotating black hole in vacuum, oblique magnetic field

Effect of misalignement.
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Magnetic (blue) and electric (red) field lines
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Magnetic dipole in Rindler approximation

D’Orazio & Levin (Phys. Rev. D, 2013)
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Magnetic dipole in Rindler approximation

Kopáček, Tahamtan & Karas (2018)
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Magnetic null points

Field lines in equatorial plane Karas et al. (CQG, 2009, 2012)
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Magnetic null points
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Conclusions

Because of the combined effect of frame
dragging and boost, a rotating BH forms
magnetic null points.

Charged particles can be efficiently
accelerated by electric field passing

through magnetic nulls.

Karas, Kopáček, & Kunneriath (2012), Classical and Quantum Gravity, 29, id. 035010

Kopáček, Tahamtan, & Karas (2018), Physical Review D, 98, id.084055

Kopáček, & Karas (2020), Astrophysical Journal, 900, id.119
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Conclusions

The Small-Sized Telescope SST-1M is a single-mirror
design with a 4 m diameter reflector (focal length of 5.6 m)
with hexagonal facets.

The camera uses silicon photomultipliers SiPM with ∼ 1 300

ultra-fast (time resolution 500 picoseconds) light-sensitive
pixels to convert the light into an electrical signal that is
then digitized and transmitted to record the image of the
cascade shower.

The showers generated by very high-energy γ rays
(between a few TeV and 300 TeV) produce Cherenkov light;
it is sufficient to build small mirrors to detect the signal.
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Supplementary slides – Magnetic null points
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Magnetic null points – II
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Magnetic null points – III
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Supplementary slides – Killing vectors

in a vacuum spacetime generate a test-field solution of
Maxwell equations:

ξµ;ν + ξν;µ = 0

We define

Fµν = 2ξµ;ν .

Then, using the Killing equation and the definition of
Riemann tensor,

Fµν
;ν = 0.

Field invariants:

E.B =
1
4
⋆FµνF

µν , B2
− E2 =

1
2
FµνF

µν .
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Two examples of non-diverging elmg. test field

1. A spherically symmetric electric field. A unique solution
that is well-behaving both at r = r+ and at r → ∞. This
term describes a weakly charged Reissner-Nordström black
hole.

2. An asymptotically uniform magnetic field:

Fµν → B‖ez + B⊥ex,

i.e. Frθ → −B⊥ r sinφ,

Frφ → B‖ r sin
2 θ −B⊥ r sin θ cos θ cosφ,

Fθφ → B‖ r
2
sin θ cos θ +B⊥ r2 sin

2 θ cosφ.
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