Search of Light Dark matter with the CRESST-III experiment

Paolo Gorla
Laboratori Nazionali del Gran Sasso - INFN

Marcel Grossmann
Meeting
July 9 2021
CRESST @ Laboratori Nazionali del Gran Sasso
CRESST @ Laboratori Nazionali del Gran Sasso

- ~3600 m.w.e. deep
- μs: $~3 \times 10^{-8}/(s \ cm^2)$
- γs: $~0.73/(s \ cm^2)$
- neutrons: $4 \times 10^{-6} \ n/(s \ cm^2)$
The CRESST Experiment
Cryogenic Rare Event Search with Superconducting Thermometers

CRESST goal: direct detection of dark matter particles via their scattering off target nuclei in cryogenic detectors, operated at ~15 mK
The CRESST Experiment

Cryogenic Rare Event Search with Superconducting Thermometers

CRESST goal: direct detection of dark matter particles via their scattering off target nuclei in cryogenic detectors, operated at ~15 mK
The CRESST Experiment

Cryogenic Rare Event Search with Superconducting Thermometers

CRESST goal: direct detection of dark matter particles via their scattering off target nuclei in cryogenic detectors, operated at ~15 mK

Scintillating CaWO$_4$ crystals as target

Separate cryogenic light detector
CRYOGENIC CALORIMETER

Heat link

Thermometer

Absorber

heat bath ≈ 10 mK

\[\Delta T = \frac{\Delta E}{C} \]
TRANSITION EDGE SENSOR

Energy deposition in absorber
\(\sim \text{keV}\)

Temperature rise in TES
\(\sim \mu\text{K}\)

Resistance change
\(\sim \text{m}\Omega\)
CRYOGENIC DETECTOR

Phonon signal (\approx90 %)
(almost) independent of particle type
precise measurement of the deposited energy

Scintillation light (few %)
particle-type dependent
→ LIGHT QUENCHING
Simultaneous signals from the transition edge sensors (TESs)
EVENT DISCRIMINATION

Light Yield = \frac{\text{Light signal}}{\text{Phonon signal}}

Characteristic of the event type

Excellent discrimination between potential signal events (nuclear recoils) and dominant radioactive background (electron recoils)
EVENT DISCRIMINATION

Light Yield = \frac{\text{Light signal}}{\text{Phonon signal}}

Characteristic of the event type

Excellent discrimination between potential signal events (nuclear recoils) and dominant radioactive background (electron recoils)
CRESST-III: LOW-THRESHOLD DETECTORS

Detector layout optimised for low-mass dark matter

Radical reduction of dimension

- Cuboid crystals of (20×20×10)mm³ (≈24g)
- With self grown crystals ≈4 counts/(keV kg day)
- Veto of surface-related background

©T. Dettlaff/MPP
CRESST-III FIRST RUN

Data taking from May 2016 to February 2018
DETECTOR A

Lowest threshold in the first run of CRESST-III

Data taking period: 10/2016 – 01/2018
Non-blind data (dynamically growing): 20% randomly selected
Target crystal mass: 23.6g
Gross exposure (before cuts): 5.689 kg days
Nuclear recoil threshold: 30.1 eV
SELECTION CRITERIA

Objective
Keep only events where a correct determination of the amplitude (→ energy) is guaranteed

Unbiased (blind) analysis
1. Design cuts on non-blind training set (≤20%, excluded from DM data set)
2. Apply without change to blind DM data set

Rate: noise conditions (14% of measuring time)
Stability: Detector(s) in operating point (3% of measuring time)
Data quality: Non-standard pulse shapes (e.g. i-Stick events and pileup)
Coincidences: with μ-veto (7.6% of measuring time), i-Sticks, other detector modules
EFFICIENCY/SIGNAL SURVIVAL PROBABILITY

Simulated by artificial pulses placed at random positions in the data stream.

Includes trigger and cuts.

≥60% efficiency over broad energy range.
DARK MATTER DATA

Analysis optimized for very low energies: 30eV → 16keV

Cosmogenic activation 179Ta + e$^-$→179Hf + ν_e (1.8y)

![Graph showing light yield vs energy and counts per 30eV](image)

- M-shell: 2.6 keV
- L-shell: 11.3 keV
DARK MATTER DATA

Analysis optimized for very low energies: 30eV → 16keV

Acceptance region fixed before unblinding

- 50% O recoils below
- 99.5% W recoils above
FROM ACCEPTED EVENTS TO DARK MATTER LIMITS

Energy spectrum of accepted events

Simulated dark matter energy spectrum

Yellin one dimensional optimum interval method
• More than one order of magnitude improvement at 0.5 GeV/c2
RESULTS

- More than one order of magnitude improvement at 0.5 GeV/c^2
- Extended reach from 0.5 GeV/c^2 to 0.16 GeV/c^2
RESULTS

- More than one order of magnitude improvement at 0.5 GeV/c^2
- Extended reach from 0.5GeV/c^2 to 0.16GeV/c^2
- Unexpected rise of event rate < 200eV
Unexplained low energy background:
- we explore regions never probed before
- we see a background never observed before
THE EVENT RISE

Present in different detectors, but spectral shape not compatible with one single common origin

To pinpoint its origin we prepared dedicated setups with hardware modifications to disentangle the different contributions to be installed in the CRESST cryostat

- Crystal material
- Crystal surface
- Holding
- Facing surfaces
- ...

What happens below 100eV?
Cross checks with other low threshold experiments will be very interesting.
New CRESST-III runs ongoing to look into the origin of the background

- Assembly @ LNGS concluded mid February 2020
- Cooldown started February 17th with detectors operational on the fourth week of February – Terrible timing
- March 12th 2020 we had to stop the run and put the apparatus in safe conditions
- July new cooldown started
- From August detectors commissioned and calibrated
- Since November 5th 2020 collecting dark matter data!
 - First preliminary analysis of calibration data → very promising
 - Collecting (blind) exposure
THE CRESST III PROGRAM

Upgrade of CRESST-III to read-out 288 channels

2021
• Final planning, prototyping and testing of:
 • SQUID read-out electronics
 • wiring
 • biasing system and DAQ
• Detector R&D:
 • lower threshold
 • complementary materials
 • high production rate

2022
• Upgrade of the setup at LNGS
• Production and testing of detectors

2023
• Restart data taking

Proceeding a little slower than planned....
New frontiers. New potential.
New challenges...