Search of Light Dark matter with the CRESST-III experiment

Paolo Gorla Laboratori Nazionali del Gran Sasso - INFN

Marcel Grossmann Meeting July 9 2021

CRESST @ Laboratori Nazionali del Gran Sasso

CRESST @ Laboratori Nazionali del Gran Sasso

The CRESST Experiment Cryogenic Rare Event Search with Superconducting Thermometers

CRESST goal: direct detection of dark matter particles via their scattering off target nuclei in cryogenic detectors, operated at ~15 mK

The CRESST Experiment Cryogenic Rare Event Search with Superconducting Thermometers

The CRESST Experiment Cryogenic Rare Event Search with Superconducting Thermometers

MG16 2021 - 09/07/2018

Scintillating CaWO₄ crystals as target

Separate cryogenic light detector

Paolo Gorla - LNGS

CRYOGENIC CALORIMETER

TRANSITION EDGE SENSOR

CRYOGENIC DETECTOR

MG16 2021 - 09/07/2018

Phonon signal (≥90 %)

(almost) independent of particle type precise measurement of the deposited energy

Scintillation light (few %) particle-type dependent LIGHT QUENCHING \rightarrow

DETECTOR MODULE

EVENT DISCRIMINATION

Light Yield= Light signal Phonon signal Characteristic of the event type

Excellent discrimination between potential signal events (**nuclear recoils**) and dominant radioactive background (**electron recoils**)

0

EVENT DISCRIMINATION

Light Yield = <u>Light signal</u> Phonon signal

Characteristic of the event type

Excellent discrimination between potential signal events (**nuclear recoils**) and dominant radioactive background (**electron recoils**)

CRESST-III: LOW-THRESHOLD DETECTORS

Detector layout optimised for low-mass dark matter **Radical reduction of dimension**

- Cuboid crystals of (20×20×10)mm³ (≈24g)
- With self grown crystals ≈4 counts/(keV kg day)
- Veto of surface-related background

MG16 2021 - 09/07/2018

CaWO₄ iSticks (with holding clamps & TES)

- reflective and scintillating housing
- light detector (with TES)

block-shaped target crystal (with TES)

CRESST-III FIRST RUN

Data taking from May 2016 to February 2018

MG16 2021 - 09/07/2018

Paolo Gorla - LNGS

DETECTOR A

Lowest threshold in the first run of CRESST-III

CaWO₄ iSticks (with holding clamps & TES)

 reflective and scintillating housing

light detector (with TES)

block-shaped target crystal (with TES)

Data taking period: Non-blind data (dynamically growing): Target crystal mass: Gross exposure (before cuts): Nuclear recoil threshold:

MG16 2021 - 09/07/2018

Phys. Rev.D100(2019) 10 102002

10/2016 - 01/2018 20% randomly selected 23.6g 5.689 kg days 30.1 eV

SELECTION CRITERIA

Objective

Keep only events where a correct determination of the amplitude (\rightarrow energy) is guaranteed **Unbiased (blind) analysis**

- 1. Design cuts on <u>non-blind</u> training set (≦20%, excluded from DM data set)
- 2. Apply without change to <u>blind</u> DM data set

Rate: noise conditions (14% of measuring time)
Stability: Detector(s) in operating point (3% of measuring time)
Data quality: Non-standard pulse shapes (e.g. i-Stick events and pileup)
Coincidences: with μ-veto (7.6% of measuring time), i-Sticks, other detector modules

≦20%, excluded from DM data set) a set

EFFICIENCY/SIGNAL SURVIVAL PROBABILITY

MG16 2021 - 09/07/2018

Simulated by artificial pulses placed at random positions in the data stream

Includes trigger and cuts

≥60% efficiency over broad energy range

DARK MATTER DATA

17

DARK MATTER DATA

Analysis optimized for very low energies: $30eV \rightarrow$ Acceptance region fixed before unblinding

$eV \rightarrow 16 keV$

FROM ACCEPTED EVENTS TO DARK MATTER LIMITS

RESULTS

More than one order of magnitude \bullet improvement at 0.5 GeV/c²

20

RESULTS

- More than one order of magnitude \bullet improvement at 0.5 GeV/c²
- Extended reach from 0.5GeV/c^2 to 0.16GeV/c^2

RESULTS

- More than one order of magnitude \bullet improvement at 0.5 GeV/c²
- Extended reach from 0.5GeV/c^2 to 0.16GeV/c^2
- Unexpected rise of event rate < 200eV

Unexplained low energy background:

- we explore regions never probed before •
- we see a background never observed before \bullet

THE EVENT RISE

What happens below 100eV? Cross checks with other low threshold experiments will be very interesting.

Present in different detectors, but spectral shape not compatible with one single common origin

To pinpoint its origin we prepared dedicated setups with hardware modifications to disentangle the different contributions to be installed in the CRESST cryostat

- Crystal material
- Crystal surface
- Holding
- Facing surfaces

. . .

Understanding the rise

New CRESST-III runs ongoing to look into the origin of the background

- Assembly @ LNGS concluded mid February 2020 Cooldown started February 17th with detectors operational on the fourth week of February – Terrible timing
- March 12th 2020 we had to stop the run and put the apparatus in safe conditions
- July new cooldown started
- From August detectors commissioned and calibrated Since November 5th 2020 collecting dark matter data!
- First preliminary analysis of calibration data Ο
 - very promising \rightarrow
- Collecting (blind) exposure Ο

THE CRESST III PROGRAM

Upgrade of CRESST-III to read-out 288 channels

2021

- •Final planning, prototyping and testing of :
 - SQUID read-out electronics
 - wiring
 - biasing system and DAQ \bullet
- •Detector R&D:
 - lower threshold \bullet
 - complementary materials
 - high production rate

2022

- •Upgrade of the setup at LNGS
- Production and testing of detectors

2023

•Restart data taking

Proceeding a little slower than planned....

New frontiers. New potential. New challenges...

