Bosonic Dark matter in Neutron stars and Gravitational waves

Davood Rafiei Karkevandi

In collaboration with: Soroush Shakeri, Violetta Sagun and Oleksii Ivanytskyi

Perspective:

GW 170817

Dark matter accumulation by a neutron star:

Accumulation of DM by a star or a NS during its life time

Different scenarios that DM can exist in a NS

 A) Progenitor, B) Main sequence (MS) star, C) Supernova explosion & formation of a proto-NS, D) Equilibrated NS
 O. Ivanytskyi, V. Sagun, I. Lopes. Phys. Rev. D 102, 063028 (2020)

NS exists in a dense halo or region of DM or passes through it

A. Del Popolo, et al. Universe 6 (2020) 12, 222 X. Y. Li, et al. JCAP10(2012)031 F. Sandin & P. Ciarcelluti. Astropart.Phys.32:278-284,2009 Deliyergiyev, et.al. Phys. Rev. D 99, 063015 (2019) Ang Li, et al. astropartphys.2012.07.006

Dark star as an accretion center of baryonic matter

DM production in the NS matter

John Ellis, et al. Phys. Rev. D 97, 123007 (2018) A. Nelson, S. Reddy, D. Zhou, JCAP07(2019)012 John Ellis, et al. Phys. Rev. D 97, 123007 (2018) Qian-Fei Xiang,, et al. Physical Review C 89, 025803 (2014) I.Goldman, et al. Phys.Lett.B 725 (2013) 200-207 P. Ciarcelluti & F. Sandin. Phys.Lett. B695:19-21,2011 F. Sandin & P. Ciarcelluti. Astropart.Phys.32:278-284,2009

DM capture by NS in a binary system including Dark star or Dark star – NS merger

I. Goldman, et al. Phys.Lett.B 725 (2013) 200-207 Moira I. Gresham, et al. Phys. Rev. D 99, 083008 (2019) P. Ciarcelluti & F. Sandin. Phys.Lett. B695:19-21,2011 F. Sandin & P. Ciarcelluti. Astropart.Phys.32:278-284,2009

Dark matter admixed Neutron star

Baryonic matter EoS

EoS with induced surface tension (IST EoS) : Beta stable matter (n,p,e)

- I. Nuclear matter ground state properties,
- II. Proton flow data,
- III. Heavy-ion collisions data,
- IV. Astrophysical observations,

V. Tidal deformability constraint from the NS-NS merger (GW170817) V.Sagun, I.Lopes, O.Ivanytskyi, *Astrophys.J.* 871 (2019) 2, 157 V.Sagun, I.Lopes, O.Ivanytskyi, *Nucl.Phys.A* 982 (2019) 883-886

Dark matter EoS

Self-interacting complex scalar field : Bosonic DM with self-interaction

- I. Boson star EoS , repulsive self-interaction, $V(\phi) = \frac{1}{4}\lambda |\phi|^4$
- II. M. Colpi, S. Shapiro, and I. Wasserman, Phys. Rev. Lett. 57, 2485 (1986).
- III. Free parameters of the DM model: boson mass (m_D) , coupling constant (λ)
- IV. Dark star

Andrea Maselli, et al. Phys. Rev. D 96, 023005 (2017) Joshua Eby, et al. JHEP 02 (2016) 028 Pau Amaro-Seoane, et al. *JCAP* 11 (2010) 002 Tolman-Oppenheimer-Volkof equation

BM and DM fluids interact only gravitationally

$$\frac{dp_B}{dr} = -(p_B + \varepsilon_B) \frac{m + 4\pi r^3 p}{r(r - 2m)}$$

$$\frac{dp_D}{dr} = -(p_D + \varepsilon_D) \frac{m + 4\pi r^3 p}{r(r - 2m)}$$

$$m(r) = \int_0^r 4\pi r^2 \varepsilon_B + \int_0^r 4\pi r^2 \varepsilon_D$$

$$m_B(r) \qquad p(r) = p_B(r) + p_D(r)$$
DM and BM EoSs
$$model{eq:model}$$
Two central BM and DM pressures: $p_{B_c}(r \simeq 0)$; $p_{D_c}(r \simeq 0)$

The pressure of which of the fluids gets zero first ???

DM core and DM halo:

D.R. Karkevandi, S. Shakeri, V. Sagun, O. Ivanytskyi, In preparation (July 2021)

Mass-Radius profile:

PRL 119, 161101 (2017)

Selected for a Viewpoint in Physics PHYSICAL REVIEW LETTERS

week ending 20 OCTOBER 2017

Ş

GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral

B. P. Abbott et al.*

(LIGO Scientific Collaboration and Virgo Collaboration) (Received 26 September 2017; revised manuscript received 2 October 2017; published 16 October 2017)

Tidal forces deform NSs in binary systems

Tanja Hinderer

"Tidal Love Numbers of Neutron Stars" Astrophys.J. 677 (2008) 1216-1220 Tanja Hinderer, et al. Phys.Rev.D81:123016,2010 Sergey Postnikov, et al. Phys.Rev.D 82 (2010) 024016

$$Q_{ij} = \lambda_t \varepsilon_{ij}$$
External tidal field
Induced quadrupole moment
Tidal deformability

$$\lambda_t = \frac{2}{3}k_2R^5$$
 k_2 : Dimensionless tidal love number
R: radius of star
 k_2 will be calculated by TOV equation, so
it is related to the NS matter and the EoS
Dimensionless tidal deformability : $\Lambda = \frac{\lambda_t}{M^5} = \frac{2}{3}k_2$ (-

R and M are the mass and radius of star

Dimensionless tidal deformability GW170817, $\Lambda \leq 580$ for $M = 1.4M\odot$

Effect of changing the boson's mass for $\lambda = \pi$ and $F_{\chi} = 10\%$

Gray solid line : $M = 1.4M\odot$ Gray dashed line: $\Lambda = 580$

Black solid line: Only BM (without DM)

DM halo to DM core transform \Rightarrow Decrease in tidal deformability

Tidal deformability crucially depends on radius

<u>Colored</u> vertical dashed lines: $R_{M_{1,4}}$

 $\lambda=\pi$, $F_{\chi}=10\%$

Radius is the outermost radius of star, for DM halo R_D and for DM core R_B

Effect of changing the DM fraction F_{χ} for $m_D=200$ MeV and $\lambda=\pi$

Higher values of $F_{\chi} \Rightarrow$ tidal deformability grows

D.R. Karkevandi, S. Shakeri, V. Sagun, O. Ivanytskyi, In preparation (July 2021)

DM halo – DM core formation by changing DM fraction

 $m_D=200$ MeV , $\lambda=\pi$

DM halo increases tidal deformability, however, DM core decrease Λ

D.R. Karkevandi, S. Shakeri, V. Sagun, O. Ivanytskyi, In preparation (July 2021)

Conclusion and summary:

Self-interacting complex scalar field as the DM candidate in a DM admixed NS

DM core and DM halo formation considering λ , m_D and F_{γ}

ET EINSTEIN TELESCOPE ATHENA: ngvla

<u>Radius</u> as an important constraint

Strange objects <u>GW190814</u>

ICRANet-ISFAHAN Astronomy Meeting (virtual) November 3 - 5, 2021

Thanks a lot for your attention

Nagsh-e Jahan Square Isfahan-Iran

N

ALIR