First Results from PandaX-4T

Jianglai Liu Shanghai Jiao Tong University On behalf of the PandaX Collaboration

Dark matter: "too" many possibilities

Samuel Velasco/Quanta Magazine

E PANDA X

"Certain" dark matter candidates

PHYSICAL REVIEW D

VOLUME 31, NUMBER 12

15 JUNE 1985

Detectability of certain dark-matter candidates

Mark W. Goodman and Edward Witten Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08544 (Received 7 January 1985)

We consider the possibility that the neutral-current neutrino detector recently proposed by Drukier and Stodolsky could be used to detect some possible candidates for the dark matter in galactic halos. This may be feasible if the galactic halos are made of particles with coherent weak interactions and masses $1-10^6$ GeV; particles with spin-dependent interactions of typical weak strength and masses $1-10^2$ GeV; or strongly interacting particles of masses $1-10^{13}$ GeV.

2021/07/08

WIMP: hide and seek

Dual phase xenon TPC

Detector capability:

- □ Large monolithic target
- 3D reconstruction and fiducialization
- Good ER/NR rejection
- Calorimeter capable of seeing

a couple of photons/electrons

Multi-ton LXe Experiments

LZ, 7 ton, Sanford Lab, US

XENONnT, 6 ton LNGS, Italy

2021/07/08

China Jinping underground Laboratory

CJPL-II

PandaX Experiments

Particle and Astrophysical Xenon Experiments

PandaX Collaboration

Finished total 132 ton-day exposure in 2019

PandaX-4T overview

Ultrapure water shield: 13 m (H) x 10 m (D) ~ 900 m³
 TPC: 1.2 m (H) x 1.2 m (D), 3.7-tonne of LXe
 3-in PMTs: 169 top/199 bottom

□Apr. 2, 2018, permission from CJPL management to start construction in B2 hall

Aug. 19, 2019, infrastructure completed, detector installation in CJPL-II started

□Mar 6, 2020, offline distillation of xenon completed

□May 28, 2020, installation completed

□Nov. 28, 2020 – Apr. 16, 2021, commissioning run

Infrastructure construction photos

2021/07/08

Infrastructure construction photos

2021/07/08

1

Gas, cryogenics, and distillation systems

TPC installation

2021/07/08

Instrumented clean room

Electronics hut

Cryogenics stability

In the stable running period, the P and T are stable within 0.5% and 0.1K, separately.

Parameters	Heating load (No purification)	Maximum Cooling Power	Purification flow rate	Outer Vacuum
Value	~50W	~580W	~110 SLPM (40 kg/h)	<2E-4Pa

Electronics and DAQ

□ Trigger-less mode: read out pulses above 20 ADC (~ 1/3 PE)

□ Average single photon efficiency ~ 95%

DAQ maximum bandwidth 450MB/s

TPC operation conditions

During the run, HV set at a few different values to avoid excessive discharges.

Data taking history

(1)-(5): Commissioning data taking subset

Electron lifetime: in situ S2 vertical uniformity calibration \Box Ref: the maximum drift time ~ 840 µs (field dependent)

Stable data running period: 95.0 calendar days

Lower level data selection cuts

Drift time [µs]

Calibration methods

Calibration source	Position
^{83m} Kr/ ²²⁰ Rn	Injected from gas panel
²⁴¹ Am-Be	Calibration tubes
D-D neutron	Beam pipe
^{83m} Kr/ ²²⁰ Rn ²⁴¹ Am-Be D-D neutron	Injected from gas panel Calibration tubes Beam pipe

2021/07/08

SEG and uniformity

Energy reconstruction

#Set	PDE [%]	EEE [%]	SEG [PE/e]	() <u>}</u>]]]]4
1-2	9.0±0.2	90.2±5.4	3.8±0.1	
3-5	9.0±0.2	92.6±5.4	4.6±0.1	

164 keV (131mXe) evolution

□ Each data point represents about 4000 ^{131m}Xe events

□ Systematic uncertainty ~ 0.3%

Data used together with AmBe to tune the light, charge yield, as well as fluctuations in our signal model

2021/07/08

Nuclear recoil calibration with AmBe neutrons **EPANDAX**

Data used together with DD to tune the light, charge yield, as well as fluctuations in our signal model

2021/07/08

Electron recoil calibration with ²²⁰Rn

□ Measured leak ratio (below NR median) = $6/1393 = 0.43\% \pm 0.18\%$

Data and ER model agree well

□ Same S1 and S2 efficiency obtained from the ER and NR data

 \Box Plateaued efficiency at 40 keV_{nr} ~78%.

ER background from detector materials

Overall agreement between data and MC (>1MeV): 14%

Expected background: 33 ± 4 events

Rn background

Rn background	Estimation method	Activity [µBq/kg]		
²²² Rn	²²² Rn alpha	4.8 (0.1)	Improved 6	
	²¹⁸ Po alpha 4.5 (0.1)		PandaX-II!	
	²¹⁴ Bi- ²¹⁴ Po coincidence	0.87 (0.01)	IN S & B	
²²⁰ Rn	²²⁰ Rn- ²¹⁶ Po coincidence	0.07 (0.01)		

²²²Rn level evolution

□ Set $3 \rightarrow 4$: online Kr distillation (10 SLPM)

 \Box Set 4 \rightarrow 5: distillation off to reduce Rn emanation from the tower

□ Low background directly extracted: 347 ± 190 events

2021/07/08

¹²⁷Xe (cosmogenically activated)

E PANDA X

Tritium background

- □ Tritium spectrum identified in the data
- Likely originated from a tritium calibration at the end of PandaX-II
- □ Level floating in the final dark matter fit: ~ $5(0.3)x10^{-24}$ (mol/mol)

Surface background (Rn progenies)

IR Quantile

40

60

qS1 [PE]

80

100

120

 Surface events with larger qS2 (better reconstruction) are more suppressed by radial cut.
 Expected background: 0.6 ± 0.2 events

20

0.6

0

Neutron background

Accidental background

E PANDAX

FV determination

- Based on background simulation (10 t-year)
 Uniform ER (including
 - tritium) normalization come
 - from data
- \Box Define FoM = sqrt(B)/M
- □ Best FV = 2.67 tonne
- □ FV cuts in the data

maintaining the same FV

(correcting for reconstruction bias)

Background composition

Component	Nominal (evts)	
³ T (from fit to data)	527 (50)	
Flat ER* (18-30keV side band)	492 (31)	
Rn	347 (190)	
Kr	53 (34)	
Material	33 (4)	
Xe127	9 (2)	
Neutron	0.9 (0.4)	
Neutron-X	0.4 (0.2)	
Surface	0.6 (0.2)	
Accidental	2.4 (0.5)	
B8	0.8 (0.4)	
Sum	1033 (59)	

□ Flat ER (Rn+Kr+Material) is determined from

side band in DM data

 Background per unit target is improved from PandaX-II by 4 times (<10 keV)

Expected below-NR-median events: 10.3 (1.0) evts

Position distributions

Events uniformly distributed in the FV, expected if dominated by tritium and radon.

Spectral comparison

- Fit data with unbinned
 likelihood with all
 signal/background PDFs in
 (S1, S2_b)
- □ No excess found,

background-only p-value

0.7

Spectrum agrees with expected background

Likelihoods of the six below-NR events

Exposure: 0.63 tonne•year Sensitivity improved from PandaX-II final analysis by 2.8 times (40 GeV/ c^2) □Our limit is ~1.3 times stronger than XENON1T around 40 GeV/c² Dived into previously unexplored territory! □ Approaching the "low E" neutrino floor

E PANDAX

SUSY benchmark contours (MasterCode) EPJC 78, no.3, 256 (2018), EPJC 78, 158 (2018)

PandaX-4T has completed its commissioning run

- With a 0.63 tonne•year exposure, PandaX-4T produced the strongest WIMP-nucleon interaction constraint (arXiv shortly)
- This demonstrates the physics potential of a highly sensitive multi-ton liquid xenon detector (dark matter, neutrinos, ...)
- PandaX-4T is currently performing an offline tritium removal campaign, aiming to reduce the electron recoil background by at least two-fold
 In parallel, the collaboration is developing the plan for the next generation experiment at CJPL

Charge pattern of ^{83m}Kr event

E PANDA X