

PHYS. REV. D 101, 023012 (2020)

PERFORMANCE AND SCIENCE REACH OF THE PROBE OF ...

FIG. 23. Left: Skymap of nearby starburst galaxies from Refs. [35,103] weighted by radio flux at 1.4 GHz, the attenuation factor accounting for energy losses incurred by UHECRs through propagation, and the exposure of POEMMA. The map has been smoothed using a von Miser-Fisher distribution with concentration parameter corresponding to a search radius of 15.0° as found in Ref. [35]. The color scale indicates \mathcal{F}_{ssc} , the probability density of the source sky map, as a function of position on the sky. The white dot-dashed line indicates the supergalactic plane. Right: Same as at left for nearby galaxies from the 2MRS catalog [105] and weighting by K-band flux corrected for Galactic extinction.

FIG. 18. Left: sky plot of the neutrino horizon for the BNS merger model of Ref. [22]. Right: same as at left for the sGRB EE neutrino model of Ref. [17]. John Krizmanic UMBC/CRESST/NASA/GSFC for the POEMMA Collaboration

6-Jul-21

- 1. Scientific and Experimental Motivation.
- 2. POEMMA & Mission Description: JCAP, Vol 2021, 06, id.007
- 3. POEMMA UHECR & UHE Neutrino Performance via air fluorescence measurements.
 - Summary of results presented in PhysRevD.101.023012 and PhysRevD.103.043017
- 4. POEMMA VHE Neutrino Performance via optical Cherenkov measurements.
 - Summary of results presented in PhysRevD.100.063010 and PhysRevD.102.123013
- 5. POEMMA-inspired Space-based Research and Development ... moving forward
 - vSpaceSim NASA-funded end-to-end cosmic neutrino simulation development (PoS(ICRC2019)936)
 - EUSO-SPB2 ULDB flight in spring 2023

6-Jul-21 Summary & Comments

29th JEM-EUSO International Collab Meeting - vCSM

ournal of Cosmology and Astroparticle Physics

The POEMMA (Probe of Extreme Multi-Messenger Astrophysics) observatory

POEMMA collaboration

A.V. Olinto.^{1,*} J. Krizmanic.^{2,3} J.H. Adams.⁴ R. Aloisio.⁵ L.A. Anchordoqui,⁶ A. Anzalone,^{7,8} M. Bagheri,⁹ D. Barghini,¹⁰ M. Battisti,¹⁰ D.R. Bergman,¹¹ M.E. Bertaina,¹⁰ P.F. Bertone,¹² F. Bisconti,¹³ M. Bustamante,¹⁴ F. Cafagna,¹⁵ R. Caruso,^{16,8} M. Casolino,^{17,18} K. Černý,¹⁹ M.J. Christl,¹² A.L. Cummings,⁵ I. De Mitri,⁵ R. Diesing,¹ R. Engel,²⁰ J. Eser,¹ K. Fang,²¹ F. Fenu,¹⁰ G. Filippatos,²² E. Gazda,⁹ C. Guepin,²³ A. Haungs,²⁰ E.A. Hays,² E.G. Judd,²⁴ P. Klimov,²⁵ V. Kungel,²² E. Kuznetsov,⁴ Š. Mackoviak.²⁶ D. Mandát.²⁷ L. Marcelli.¹⁸ J. McEnerv.² G. Medina-Tanco,²⁸ K.-D. Merenda,²² S.S. Meyer,¹ J.W. Mitchell,² H. Miyamoto,¹⁰ J.M. Nachtman,²⁹ A. Neronov,³⁰ F. Oikonomou,³¹ Y. Onel,²⁹ G. Osteria,³² A.N. Otte,⁹ E. Parizot,³³ T. Paul,⁶ M. Pech,²⁷ J.S. Perkins,² P. Picozza,^{18,34} L.W. Piotrowski,³⁵ Z. Plebaniak,¹⁰ G. Prévôt,³³ P. Reardon,⁴ M.H. Reno,²⁹ M. Ricci,³⁶ O. Romero Matamala,⁹ F. Sarazin,²² P. Schovánek,²⁷ V. Scotti,^{32,37} K. Shinozaki,³⁸ J.F. Soriano,⁶ F. Stecker,² Y. Takizawa,¹⁷ R. Ulrich,²⁰ M. Unger,²⁰ T.M. Venters,² L. Wiencke,²² D. Winn,²⁹ **R.M.** Young¹² and M. $Zotov^{25}$

¹The University of Chicago, Chicago, IL, U.S.A. ²NASA Goddard Space Flight Center, Greenbelt, MD, U.S.A. ³Center for Space Science & Technology, University of Maryland, Baltimore County, Baltimore, MD, U.S.A. ⁴University of Alabama in Huntsville, Huntsville, AL, U.S.A. ⁵Gran Sasso Science Institute, L'Aquila, Italy ⁶City University of New York, Lehman College, NY, U.S.A. ⁷Istituto Nazionale di Astrofisica INAF-IASF, Palermo, Italy ⁸Istituto Nazionale di Fisica Nucleare, Catania, Italy ⁹Georgia Institute of Technology, Atlanta, GA, U.S.A. ¹⁰Universita' di Torino, Torino, Italy ¹¹University of Utah, Salt Lake City, Utah, U.S.A. ¹²NASA Marshall Space Flight Center, Huntsville, AL, U.S.A. ¹³Istituto Nazionale di Fisica Nucleare, Turin, Italy ¹⁴Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark ¹⁵Istituto Nazionale di Fisica Nucleare, Bari, Italy ¹⁶Universita' di Catania, Catania Italy ¹⁷RIKEN, Wako, Japan ¹⁸Istituto Nazionale di Fisica Nucleare, section of Roma Tor Vergata, Italy ¹⁹Joint Laboratory of Optics. Faculty of Science. Palacký University, Olomouc, Czech Republic ²⁰Karlsruhe Institute of Technology, Karlsruhe, Germany ²¹Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305, U.S.A. ²²Colorado School of Mines, Golden, CO, U.S.A. ²³Department of Astronomy, University of Maryland, College Park, MD, U.S.A. ²⁴Space Sciences Laboratory, University of California, Berkeley, CA, U.S.A. ²⁵Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia ²⁶Institute of Experimental Physics, Slovak Academy of Sciences, Kosice, Slovakia ²⁷Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic ²⁸Instituto de Ciencias Nucleares, UNAM, CDMX, Mexico ²⁹University of Iowa, Iowa City, IA, U.S.A. ³⁰University of Geneva, Geneva, Switzerland ³¹Institutt for fysikk, NTNU, Trondheim, Norway ³²Istituto Nazionale di Fisica Nucleare, Napoli, Italy ³³Université de Paris, CNRS, Astroparticule et Cosmologie, F-75013 Paris, France ³⁴Universita di Roma Tor Vergata, Italy ³⁵Faculty of Physics, University of Warsaw, Warsaw, Poland ³⁶Istituto Nazionale di Fisica Nucleare — Laboratori Nazionali di Frascati, Frascati, Italy ³⁷Universita' di Napoli Federico II, Napoli, Italy

29th JEM-EUSO International Collab Meeting - vCSNAtional Centre for Nuclear Research, Lodz, Poland

POEMMA Heritage

Based on OWL 2002 study, JEM-EUSO, EUSO balloon experience, and CHANT proposal

The Cosmic Ray Spectrum

5

Key Features:

- Knee: ~ 10^{6.5} GeV Consistent with galactic sources changing via Peters cycle, Z-dependent acceleration (lighter going to heavier).
- . Ankle: ~10^{9.5} GeV
 - a. Funky composition evolution.
 - b. Galactic to extragalactic transition?
 - c. Due to proton interactions with evolving CMB (disfavored)
 - d. Composition effect?
 - Foot/Toes/Bunions: ~10^{10.7} GeV

The Cosmic Ray Spectrum: Structure in VHE & UHECR energy range

TA HotSpot: PoS(ICRC2019)310

Origin UHECRs still unknown

Partner

Giant ground Observatories: Auger & TA

- TA Hotspot: intermediate-scale anisotropy
- sources are extragalactic: Auger dipole > 8 EeV
- spectral features: discrepancies E > 50 EeV
- UHECR Composition: unclear E > 50 EeV
- source anisotropy Hints E > 50 EeV

Figure 1: ICRC 2019 energy spectra of the Pierre Auger Observatory and the Telescope Array scaled by E^3 . In each experiment, data of different detection techniques are combined to obtain the spectrum over a wide energy range.

Figure 1: (a) A significance map of the UHECR events with E > 57 EeV for 11 years of TA data (May 2008 - May 2019) in the equatorial coordinates. Events are smoothed by 25° oversampling radius circle, which is defined in this paper. (b) A significance map of the UHECR events with E > 57 EeV for events observed in the 1st 5 years of TA data (May 2008 - May 2013). Events are smoothed by 20° oversampling radius circle according to our original paper [4]. The solid curves indicate supergalactic plane (SGP) and the galactic plane (GP).

Figure 9: Left: The CR flux above 8 EeV, averaged on top-hat windows of 45° radius (equatorial coordinates). The Galactic plane and the Galactic center are indicated by a dashed line and a star respectively. Right: Energy dependence of the dipolar amplitude measured in four energy bins above 4 EeV.

POEMMA: UHECR Exposure History

POEMMA Science goals:

primary

- Discover the origin of Ultra-High Energy Cosmic Rays
 - Measure Spectrum, composition, Sky Distribution at Highest Energies (E_{CR} > 20 EeV)
 Requires very good angular, energy, and X_{max} resolutions: stereo fluorescence
 High sensitivity UHE neutrino measurements via stereo fluorescence measurements
- Observe Neutrinos from Transient Astrophysical Events
 - Measure beamed Cherenkov light from upward-moving EAS from τ -leptons source by v_{τ} interactions in the Earth (E_v > 20 PeV)

Requires tilted-mode of operation to view limb of the Earth & ~10 ns timing *Allows for tilted UHECR air fluorescence operation*, higher GF but degraded resolutions *secondary* $v_s \approx 450 \text{ TeV} @ 100 \text{ EeV}$

- study fundamental physics with the most energetic cosmic particles: CRs and Neutrinos
- search for super-Heavy Dark Matter: *photons and neutrinos*
- study Atmospheric Transient Events, survey Meteor Population
 ^{6-Jul-21} 29th JEM-EUSO International Collab Meeting vCSM

POEMMA: Instruments defined by weeklong IDL run at GSFC

TABLE I: POEMMA Specifications:

Photometer	Components		Spacecraft		
Optics	Schmidt	45° full FoV	Slew rate	90° in 8 min	
	Primary Mirror	4 m diam. 🔍	Pointing Res.	0.1°	
	Corrector Lens	3.3 m diam.	Pointing Know.	0.01°	
	Focal Surface	1.6 m diam.	Clock synch.	10 nsec	
	Pixel Size	$3 \times 3 \text{ mm}^2$	Data Storage	7 days	
	Pixel FoV	0.084°	Communication	S-band	
PFC	MAPMT (1 μ s)	126,720 pixels	Wet Mass	3,450 kg	
PCC	SiPM (20 ns)	15,360 pixels	Power (w/cont)	550 W	
Photometer (One)			Mission	(2 Observatories)	
	Mass	1,550 kg	Lifetime	3 year (5 year goal)	
	Power (w/cont)	700 W	Orbit	525 km, 28.5° Inc	
	Data	< 1 GB/day	Orbit Period	95 min	
			Observatory Sep. ~25 - 1000+ km		

Each Observatory = Photometer + Spacecraft; POEMMA Mission = 2 Observatories

International Collab Meeting - vCSM Imaging ~10⁴ away from diffraction limit

POEMMA: Schmidt Telescope details

Two 4 meter F/0.64 Schmidt telescopes: 45° FoV

Primary Mirror:	4 meter diameter			
Corrector Lens:	3.3 meter diameter			
Focal Surface:	1.6 meter diameter			
Optical Area_{EFF}:	~6 to 2 m ²			
Hybrid focal surface (MAPMTs and SiPM)				
3 mm line	ar nivel size. 0.08/			

FoV

POEMMA: Hybrid Focal Plane

UV Fluorescence Detection using MAPMTs with BG3 filter (300 – 500 nm) developed by JEM-EUSO: 1 usec sampling

Cherenkov Detection with SiPMs (300 – 1000 nm): 20 nsec sampling

POEMMA: Hybrid Focal Plane

POEMMA: Mission (Class B) defined by weeklong MDL run at GSFC

Mission Lifetime: 3 years (5 year goal) **Orbits:** 525 km, 28.5° Inc **Orbit Period: 95 min** Satellite Separation: ~25 km - 1000+ km 1 m (knowledge) **Satellite Position: Pointing Resolution:** 0.1° **Pointing Knowledge:** 0.01° 8 min for 90° Slew Rate: Satellite Wet Mass: 3860 kg 1250 W (w/contig) **Power:** < 1 GB/day Data: **Data Storage:** 7 days S-band **Communication:** Clock synch (timing): 10 nsec

Flight Dynamics/Propulsion: 300 km ⇒ 25 km SatSep Puts both in CherLight Pool Δt = 3 hr: 8 – 15 times Δt = 24 hr: 90 times

Dual Manifest Atlas V

Operations:

- Each satellite collects data autonomously
- Coincidences analyzed on the ground
- View the Earth at near-moonless nights, charge in day and telemeter data to ground
- ToO Mode: dedicated com uplink to re-
- ^{6-J}ørient satellites if desired

POEMMA UHECR Performance: Stereo Reconstructed Angular Resolution

50 EeV simulated event

Stereo Geometric Reconstruction

- Intersection of EAS-detector planes accurately defines the EAS trajectory
- Requires minimum opening angle between planes ≥ 5°
- With track selection → 80%
 reconstruction efficiency
- FoV_{PIX} = 0.084° coupled with small RMS spot size allows for precise determination

29th JEM-EUSO International Collab Meeting - vCSM

Stereo Recor structed Zenith Angle Resolution

Stereo Recorstructed Azimuth Angle Resolution

40 EeV

15

Significant increase in exposure with all-sky coverage Uniform sky coverage to guarantee the discovery of UHECR sources Spectrum, Composition, Anisotropy: $E_{CR} > 20 \text{ EeV}$ Very good energy (< 20%), angular ($\leq 1.2^{\circ}$), and composition

 $(\sigma_{\rm Xmax} \lesssim 30 \, {\rm g/cm^2})$ resolutions

Spectrum, Composition, Anisotropy: E_{CR} > 20 EeV

Very good energy (< 20%), angular (\leq 1.2°), and composition ($\sigma_{Xmax} \leq$ 30 g/cm²) resolutions

Olinto_2021_J._Cosmol._Astropart._Phys._2021_007

Michael Unger Work:

- Based on *ad hoc* model extrapolating Auger measurements below 40 EeV.
- Around 100 EeV,
 POEMMA X_{max}
 uncertainty 0.1 0.2 p-Fe
 separation → several
 energy points above 40
 EeV by POEMMA will
 determine composition
 evolution.

JCAP Referee: it is advertised that different scenarios/models can be distinguished}, it would be good to illustrate the prediction of such models in Fig 7. This will allows the reader to judge the discrimination power of PEOMMA, given experimental uncertainties, indicated by the blue band.

Significant increase in exposure with all-sky coverage Uniform sky coverage to guarantee the discovery of UHECR sources

POEMMA: UHECR Anisotropy Analysis see PhysRevD.101.023012

Figure 11: Left: Maximum likelihood-ratio as a function of energy threshold for the models based on SBGs and γ AGNs. The results are shown in the attenuation (full line) and no-attenuation (dashed line) scenarios. Right: Cumulated test statistics for $E_{thr} = 38$ EeV as a function of the time ordered number of events (for the SBG-only model). The number of events at the time of [39] and of this conference are indicated by the red arrows.

Catalog	${f}_{ m sig}$	TS	σ
SBG	5%	6.2	2.0
	10%	24.7	4.6
	15%	54.2	7.1
	20%	92.9	9.4
2MRS	5%	2.4	1.0
	10%	8.7	2.5
	15%	20.0	4.1
	20%	35.2	5.6
Swift-BAT AGN	5%	10.4	2.8
	10%	39.6	6.0
	15%	82.4	8.8
	20%	139.3	11.6

FIG. 24. TS profile for 1400 events for a particular scenario using the starburst source sky map in Fig. 23. In the scenario pictured here, the fraction of events drawn from the source sky map is f = 10% (left) and 20% (right), and the angular spread is $\Theta = 15^\circ$.

FIG. 23. Left: Skymap of nearby starburst galaxies from Refs. [35,103] weighted by radio flux at 1.4 GHz, the attenuation factor accounting for energy losses incurred by UHECRs through propagation, and the exposure of POEMMA. The map has been smoothed using a von Miser-Fisher distribution with concentration parameter corresponding to a search radius of 15.0° as found in Ref. [35]. The color scale indicates \mathcal{F}_{src} , the probability density of the source sky map, as a function of position on the sky. The white dot-dashed line indicates the supergalactic plane. Right: Same as at left for nearby galaxies from the 2MRS catalog [105] and weighting by K-band flux corrected for Galactic extinction.

Partner POEMMA: Air fluorescence Neutrino Sensitivity

Excellent angular resolution → accurate determination of slant depth of EAS starting point

29th JEM-EUSO International Collab Meeting - vCSM

6-Jul-21

EMMA: Air fluorescence Neutrino Sensitivity: see PhysRevD.101.023012

Effectively comes for free in stereo UHECR mode

For E_ $_{\nu}\gtrsim$ 1 PeV, σ_{cc} & σ_{Nc} virtually identical for ν & νbar

Assumptions:

- CC v_e : 100% E_v in EAS
- CC ν_{μ} & ν_{τ} : 20% E_{ν} in EAS ($\gamma c \tau_{\tau} \approx 5000$ km)
- NC ν_e & ν_μ & ν_τ : 20% E_{ν} in EAS

UHECR Background Probabilities (1 event in 5 years):

- Auger Spectrum (100% H): < 1%
- TA Spectrum (100% H): ≈ 4%

POEMMA Tau Neutrino Detection: see PhysRevD.100.063010

High-Energy Astrophysical Events generates neutrinos (v_e , v_p) and 3 neutrino flavors reach Earth via neutrino escillations. POEMMA designed to observe neutrinos with E > 20 PeV through Cherenkov signal of EASs from Earth-emerging tau decays.

POEMMA Transient Neutrino Detection

tau air shower

 ν_{τ}

 ν_{-}

slewing : 90° in 500 sec

Mary Hall Reno, University of Iowa

POEMMA ToO Neutrino Sensitivity: see PhysRevD.102.123013

17% hit for ignoring $\tau \rightarrow \mu$ **channel**

One orbit sky exposure assuming

2.72e-01

2.26e-01

81e-01

1.36e-01

9.05e-02

4.53e-02

slewing to source position

Short Bursts:

- 500 s to slew to source after alert
- 1000 s burst duration
- Source celestial location optimal
- Two independent Cher measurements
 - 300 km SatSep
- 20 PE threshold:
 - AirGlowBack < 10⁻³/year

 10^{2} 10² 10^{1} 10^{1} cm -2] Auger ANTARES $E_{\nu}^{2}\phi_{\nu}$ [GeV cm⁻ RA (rad) Q ¹0⁰ ► IceCube POEl GRAND200H Sensitivity кммк 10 Mpc, $\theta = 0^{\circ}$ 10-1 All-flavor, 10^3 s EE moderate $N_{PE} > 20$ dual prompt 10-2 10^{-2} IceCube, ANTARES, Auger Limits for 9 10 6 8 NS-NS merger GW170817 $\log_{10} E_{\nu}/[\text{GeV}]$

29th JEM-EUSO International Collab Meeting - vCSM

Long Bursts:

- 3 to 24+hr to move SatSep to 50 km
- Burst duration $\gtrsim 10^5$ s (models in plot)
- Average Sun and moon effects
- Simultaneous Cher measurements
 - 50 km SatSep
- 10 PE threshold (time coincidence):
 - AirGlowBack < 10⁻³/year

24

POEMMA ToO Neutrino Sensitivity: see PhysRevD.102.123013

POEMMA'S TARGET-OF-OPPORTUNITY SENSITIVITY TO ...

PHYS. REV. D 102, 123013 (2020)

FIG. 7. Left: sky plot of the expected number of neutrino events as a function of galactic coordinates for POEMMA in the long-burst scenario of a BNS merger, as in the Fang and Metzger model [22], and placing the source at 5 Mpc. Point sources are galaxies from the 2MRS catalog [78]. Middle: same as at left for IceCube for muon neutrinos. Right: same as at left for GRAND200k. Areas with gray point sources are regions for which the experiment is expected to detect less than one neutrino.

FIG. 8. Left: sky plot of the expected number of neutrino events as a function of galactic coordinates for POEMMA in the best-case short-burst scenario of an sGRB with moderate EE, as in the KMMK model [17], and placing the source at 40 Mpc. Point sources are galaxies from the 2MRS catalog [78]. Middle: same as at left for IceCube for muon neutrinos. Right: same as at left for GRAND200k. Areas with gray point sources are regions for which the experiment is expected to detect less than one neutrino.

29th JEM-EUSO International Collab Meeting - vCSM

POEMMA ToO Rate of Detection: see PhysRevD.102.123013

TONIA M. VENTERS et al.

PHYS. REV. D 102, 123013 (2020)

TABLE IV. Average expected numbers of neutrino events above $E_{\nu} > 10^7$ GeV detectable by POEMMA for several models of transient source classes assuming source locations at the GC and at 3 Mpc. The horizon distance for detecting 1.0 neutrino per ToO event is also provided. Source classes with observed durations >10³ s are classified as long bursts. Those with observed durations $\lesssim 10^3$ s are classified as short bursts. Models in boldface type are those models for which POEMMA has $\gtrsim 10\%$ chance of observing a ToO during the proposed mission lifetime of 3–5 years. Models in italics are the same but for a mission lifetime of 10 years.

Long bursts					
Source class	No. of ν 's at GC	No. of ν 's at 3 Mpc	Largest distance for 1.0ν per event	Model reference	
TDEs	1.4×10^{5}	0.9	3 Mpc	Dai and Fang [18] average	
TDEs	6.8×10^{5}	4.7	7 Mpc	Dai and Fang [18] bright	
TDEs	$2.7 imes 10^8$	$1.7 imes 10^3$	128 Mpc	Lunardini and Winter [19] $M_{\text{SMBH}} = 5 \times 10^6 M_{\odot}$ Lumi scaling model	
TDEs	7.7×10^{7}	489	69 Mpc	Lunardini and Winter [19] Base scenario	
Blazar flares	NA ^a	NA ^a	47 Mpc	RFGBW [20]—FSRQ proton-dominated advective escape model	
IGRB reverse shock (ISM)	1.2×10^{5}	0.8	3 Mpc	Murase [16]	
lGRB reverse shock (wind)	2.5×10^{7}	174	41 Mpc	Murase [16]	
BBH merger	$2.8 imes 10^7$	195	43 Mpc	Kotera and Silk [21] (rescaled) Low fluence	
BBH merger	$2.9 imes 10^8$	$2.0 imes 10^3$	137 Mpc	Kotera and Silk [21] (rescaled) High fluence	
BNS merger	$4.3 imes10^6$	30	16 Mpc	Fang and Metzger [22]	
BWD merger	25	0	38 kpc	XMMD [23]	
Newly born Crablike pulsars (p)	190	0	109 kpc	Fang [24]	
Newly born magnetars (p)	2.5×10^{4}	0.2	1 Mpc	Fang [24]	
Newly born magnetars (Fe)	5.0×10^4	0.3	2 Mpc	Fang [24]	
Short bursts					

Source class	No. of ν 's at GC	No. of ν 's at 3 Mpc	Largest distance for 1.0ν per event	Model reference
sGRB extended emission (moderate)	1.1×10^8	800	90 Mpc	KMMK [17]

^aNot applicable due to a lack of known blazars within 100 Mpc.

FIG. 9. The Poisson probability of POEMMA observing at least one ToO versus mission operation time for several modeled source classes. Featured source models are TDEs from Lunardini and Winter [19], BNS mergers from Fang and Metzger [22], BBH mergers from Kotera and Silk [21], and sGRBs with moderate EE from KMMK [17].

POEMMA Summary

POEMMA is designed to open two new Cosmic Wind Boiws:

- UHECRS (> 20 EeV), to dentify the source(s) of these extreme energy messengers
 - All-sky coverage with significant increase in exposure
 - Stereo UHECRe measurements of Spectrum, Composition, Anisotropy $E_{CR} \ge 50 \text{ EeV}$
 - Remarkable energy (20%), angular (1.2° and composition fraction and composition fraction and composition fraction fraction
 - Leads to high sensitivity to UHE neutrinos (> 20 EeV) via stereo air fluorescence measurements
- Neutrinos from astrophysical Transients (> 20 PeV)
 - Unique sensitivity to short- & long-lived transient events with 'full-sky' coverage
 - Highlights the low energy neutrino threshold nature of space-based ⁹⁰⁰ tical Cherenkov method, even with 70 duty cycle of order 20% MA Nadir 5 yr 60
- POEMMA sensitivity to SHDM \rightarrow y's in 20+ PeV $\sigma(X_{max}) [g/cm^2]$ (Cherenkov) and 20-P2EeV (fluorescence) energy bands
 - C. Guepin et al.: arXiv:2106. 6-Jul-21

Work in Progress:

30 F

20

- Awaiting Results from Astro2020 regarding NASA Probe recommendation and NASA implementation.
- Group is building upon POEMMA neutrino studies investigating focused neutrino missions
- vSpaceSim: Neutrino Simulation work continue under funded NASA-APRA grant: Goal to develop robust end-to-end neutrino simulation package for space-based and sub-orbital experiment: optical Cherenkov and radio signals.
- EUSO-SPB2 (with Cherenkov Camera) under development to ULDB fly in 2023.

EUSO-SPB2: Sources of Cherenkov Signals

POEMMA: proton-Air Cross Section Measurements

LUIS A. ANCHORDOQUI et al.

PHYS. REV. D 101, 023012 (2020)

Assuming 1400 UHECRs for $E_{CR} \ge 40 \text{ EeV}$

FIG. 41: The energy and X_{max} smeared distribution dN/dX_{max} for QGSJETIL04 (upper panels) and EPOS-LHC (lower panels) from the parameterization of Ref. [150] for $E_{CR} > 40$ EeV and p:N = 1.9, $\eta = 0.02$ (upper) and p:Si = 1.3, $\eta = 0.13$ (lower). The blue histograms show the full X_{max} distributions, while the green histograms show the proton components. The data points, with error bars, show the distribution of events for one sample of $N_{ovis} = 1,400$ events with error bars according to $\sqrt{N_c}/N_{evis}$, for N_i the number of events in the bin *i*. The red data points show X_{max} bins above X_{max}^{spit} and the number of events above A_{max}^{spit} .

FIG. 26. Potential of a measurement of the UHE proton-air cross section with POEMMA. Shown are also current model predictions and a complete compilation of accelerator data converted to a proton-air cross section using the Glauber formalism. The expected uncertainties for two composition scenarios (left, p:N = 1:9; right, p:Si = 1:3) are shown as red markers with error bars. The two points are slightly displaced in energy for better visibility.

POEMMA: UHECR Spectra:

Olinto_2021_J._Cosmol._Astropart._Phys._2021_007

OEMMA: Air fluorescence Neutrino Sensitivity is Robust

FIG. 43: Comparison of the instantaneous electron neutrino apertures based on stereo air fluorescence measurements. Upper points and curve are for $X_{\text{Start}} \ge 1500 \text{ g/cm}^2$ while the lower points and curve are for $X_{\text{Start}} \ge 2000 \text{ g/cm}^2$. The lower curve is 85% of the upper curve over the energy band.

UHECR observed proton background probabilities as a function of energy and observed X_{START} based on 5 year observation with the Auger and TA measured spectra.

X _{Start}	40 EeV	60 EeV	100 EeV	200 EeV	Sum		
Auger Spectrum: $N_{\text{Obs}} \ge 1$							
$\geq 1500 \text{ g/cm}^2$	$1.5 imes10^{-4}$	$1.9 imes 10^{-2}$	$3.8 imes 10^{-2}$	$4.5 imes 10^{-3}$	$6.1 imes 10^{-2}$		
$\geq 2000 \text{ g/cm}^2$	$2.8 imes10^{-7}$	$1.3 imes 10^{-3}$	$7.2 imes 10^{-3}$	$1.0 imes 10^{-3}$	$9.6 imes10^{-3}$		
Auger Spectrum: $N_{\text{Obs}} \ge 2$							
$\geq 1500 \text{ g/cm}^2$	$1.2 imes 10^{-8}$	$1.9 imes10^{-4}$	$7.1 imes 10^{-4}$	$1.0 imes 10^{-5}$	$9.1 imes10^{-4}$		
$\geq 2000 \text{ g/cm}^2$	$3.9 imes 10^{-14}$	$8.4 imes10^{-7}$	$2.6 imes10^{-5}$	$5.3 imes10^{-7}$	$2.8 imes10^{-5}$		
TA Spectrum: $N_{\text{Obs}} \ge 1$							
\geq 1500 g/cm ²	$2.5 imes10^{-4}$	$6.4 imes10^{-2}$	$1.7 imes10^{-1}$	$9.0 imes10^{-3}$	$2.5 imes10^{-1}$		
$\geq 2000 \text{ g/cm}^2$	$4.7 imes10^{-7}$	$4.4 imes10^{-3}$	$3.5 imes 10^{-2}$	$2.1 imes 10^{-3}$	$4.2 imes 10^{-2}$		
Ta Spectrum: $N_{\text{Obs}} \ge 2$							
$\geq 1500 \text{ g/cm}^2$	$3.0 imes 10^{-8}$	$2.1 imes 10^{-3}$	$1.6 imes 10^{-2}$	$4.1 imes 10^{-5}$	$1.8 imes 10^{-2}$		
$\geq 2000 \text{ g/cm}^2$	$1.0 imes 10^{-13}$	$9.8 imes10^{-6}$	$6.3 imes10^{-4}$	$2.1 imes 10^{-6}$	$6.4 imes 10^{-4}$		

UHECR Fake v's Background (1 event in 5 years):

- Auger Spectrum (100% H): < 1%
- **TA Spectrum (100% H):** ≈ 4%

Over-the-Limb VHECR Cherenkov Observations

FIG. 1. Geometry of measuring the Cherenkov signal from cosmic rays arriving from above the Earth horizon in the case of a space based instrument.

Modelling the Optical Cherenkov Signals by Cosmic Ray Extensive Air Showers Observed from Sub-Orbital and Orbital Altitudes

Cummings, A. L.; Aloisio, R.; Eser, J. Krizmanic, J. F. Submitted to PhysRevd: arXiv:

Includes effects of geomagnetic field on upwardmoving and high-altitude EAS

PAO and TA

Pierre Auger Observatory

- Location: Malargüe, Argentina
- 2019 ICRC: 14 years of operation
- Cherenkov Tank Surface Array Area: ~3000 km²
- Surface Array UHECR Aperture: ~6000 km² sr
- Fluorescence UHECR Aperture: ~ 600 km²
- Upgrading SA detectors via Auger Prime
 - Increase EAS measurement precision via better e/μ separation including radio

Telescope Array

- Location: Delta, Utah,
- 2019 ICRC: 11 years of operation
- Cherenkov Tank Surface Array Area: ~700 km²
- Surface Array UHECR Aperture: ~1300 km² sr
- Fluorescence UHECR Aperture: ~ 130 km²
- Upgrading SA and FT to TAx4 (4 x area of TA)
 - More modest precision: E_{RES} ~ 25% (from GCOS discussion)
 34

UHECR Anisotropy for full-sky using PAO and TA subject to systematics

Alves Batista et al.

3.00 1.50 0.00 -1.50 -3.00

Open Questions in Cosmic-Ray Research at Ultrahigh Energies

Even minor systematic errors in cross calibration can lead to spurious anisotropy results!

Current State of Full-sky Anisotropy Searches $E_{Auger} > 54 \text{ EeV}$ smeared on a 12° angular scale. The solid and long-dashed lines supergalactic and Galactic plane, respectively. *Reproduced with permission from* [4]. *Right:* ocal-significance maps from searches for localized excess in Equatorial coordinates. Left: y observed at $E_{TA} > 57$ EeV smeared on a 20° angular scale. Reproduced with permission

arXiv:1903.06174

Partner

POEMMA: Astrophysics from UHECR composition analysis

Use differences in angular deflections and flux attenuation for light vs heavy nuclei to assess "hot spot" sources.

Small -> Wide: H, He, N, Si, Fe

FIG. 21: Circles representing the composition-layered structure of hotspots at different energies, for proton sources (top) and nuclei sources (bottom). The radii of the circles respect the proportions of the angular sizes given by (2), for protons (black), helium (magenta), nitrogen (yellow), silicon (green) and iron (red); and for 40 EeV (left), 70 EeV (center) and 100 EeV (right).

Source, Bfield, and distance dependent!

FIG. 22: Power of the statistical test for different alternative hypotheses, that is different nuclei and number of events per hot spot. The horizontal axis on the top indicates the projected time-scale for POEMMA. Hot Spot Analysis:

- Discriminate protons (vs using X_{MAX}) from CNO and heavies by looking at the distribution of arrival directions.
- If source emits protons, then AngRes should improve ~ 1/E_{CR}
- If mixed composition, picture is more complicated
- If the hot spot is nuclei
 heavier than nitrogen, in
 two years of operation
 POEMMA will be able to
 exclude a pure-proton
 origin at the 95% CL.

Air Glow Background in Cherenkov Band: Ref 10.1016/j.nima.2020.164614

314 nm - 900 nmbarUse to calculate effective PDE (foryeSiPM): <PDE> = 0.1th**12,660 photons/m²/sr/ns**314 nm - 1000 nm~25,000 photons/m²/sr/ns314 nm - 500 nm

570 photons/m²/sr/ns

Requirement for < 1e-2 background events per year leads to high PE thresholds

10 PE (coincident Cher measurement) 20 PE (individual Cher measurement)

Viewing at angles away from nadir views more optical depth of air glow layer.

x6 for viewing limb from 525 km

Work by Simon Mackovjak

Indirect CR Measurements

Direct vs Indirect Measurements

Cosmic Rays provide a measure on how the Universe processes and distributes matter.

