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Main Take-Away
General relativity permits superluminal warp drives
that obey the weak energy condition, removing the
need for exotic sources with negative energy density.
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Outline
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What is aWarp Drive?

No formal definition, will take as curvature +
stress-energy soliton with arbitrary speed. Describe
with “Natário warp drive” space–times with metric

ds2 = −
(
N2 − NiNi

)
dt2−2Nidxidt+hijdxidxj, where hij = δij

The Alcubierre (1994)
warp drive is the
first and simplest
example (N = 1,
Nx = Ny = 0):

Nz = vsf(rs)

𝑓(rs) = 

(Image Credit: White, Davis 2006)

2r
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Energy Problems

> The first warp drives
required negative
energy (Alcubierre
1994, Natário 2002)

> More than exists in the
visible universe,
Etot ∼ −6× 1062v2s/c2 kg
for r = 100 m (Pfenning
& Ford 1997)

> Proofs put forth state
negative energy is
required (Olum 1999,
Lobo & Crawford 2003)

General Energy Density:

E =
1

16π

(
(3)R− Tr(K · K) + Tr(K)2

)

Alcubierre (1994):

EAlc =
−1

32π

(
(∂xNz)

2 +
(
∂yNz

)2)

Natário (2002):

ENat =
−1

16π
Tr(K · K)

K is the extrinsic curvature of the hypersurface in space-time, also
known as the second fundamental form. (3)R is the intrinsic Ricci
curvature of the hypersurface.
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AnOpening in Solution Space

The energy density viewed by an Eulerian (time-like,
free falling, v = −N∇t ) observer for a space–time with
general shift vector has a mixture of terms

E ∝ 2∂xNx∂yNy + 2∂xNx∂zNz + 2∂zNz∂yNy
︸ ︷︷ ︸

Indeterminant

−1

2

(
∂xNy + ∂yNx

)2 − 1

2
(∂xNz + ∂zNx)

2 − 1

2

(
∂zNy + ∂yNz

)2
︸ ︷︷ ︸

Negative Definite

The last three terms are negative definite,
the first three are of indeterminant type giving a
potential island of opportunity for positive energies.

6



Hyperbolic Shift Vector Potential
A potential φ simplifies the geometry to a single real
function

Ni = ∂iφ

Hyperbolic relations within N had not been explored,
are investigated here by a wave equation

∂2
xφ+ ∂2

yφ− 2

v2h
∂2
zφ = ρ

Disturbances in the potential (shift vector) will
‘propagate’ along the hypersurface with ‘speed’ vh/

√
2

dx⟂
dz

dx2

dz2 
= vh

2/2
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Energy under Hyperbolic Potential
The energy simplifies and can be bounded from below

E =
1

16π

(
2∂2

zφ

(
ρ+

2

v2h
∂2
zφ

)
− 4 (∂z∂xφ)

2

)
(1)

≥ 1

8π
ρ× ∂2

zφ (2)

=
1

8π
ρ× 1

2vh

∫
dx′∂rρ(r, |x′|+ |y|)|r=z−|∆x|/vh , (3)

and with additional
rules, sufficient
conditions for
non-negative
energy density can
be made

ρ

∫∂rρ

8



Constructing a Soliton (vh = 10)

> Boundaries of
sources are nearly
vertical in z-x plane

> Shift vectors
propagate outwards
along ‘future’ wave
cone

> Integrated source
should vanish
outside soliton to
ensure asymp.
vacuum
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Soliton Shift Vector

> Want a flat central region
that matches the soliton
motion (to screen right)

> Has multiple domains
> Integrated shift is zero
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Soliton Energy

> Mostly confined to
hyperbolic source
regions

> Momentum flux is
zero (consequence
of potential)

> Total energy for
bubble of R = 100 m
and bndry. thickness
1 m is ∼ 0.1M⊙v2s/c2.
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Hypersurface Volume Exp. Factor θ

> Contains expansions
and contractions on
all sides

> Largest factors
coincide with
stress-energy
sources

> For Alcubierre soln.,
θ and E are out of
phase

(Alcubierre Drive Image Credit: White 2013)
(Wormhole Image Credit: Panzi via Wikimedia Commons)
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Trace Condition

> Has positive and
negative regions
(breaks trace
‘energy’ condition)

> Requires large
pressures, but no
net motions

> EOS range matches
quasi-relativistic
massive fluid

> Trace can be used to
place bounds on
stress principal
values, complete
WEC 13



Next: Improving Energy Requirements

> Energies are still very
high for a modest warp
bubble (∼ 0.1M⊙v2s/c2)

> Several techniques have
lowered the Alcubierre
energy requirement by
tens of orders of
magnitude

> Can a form of this be
applied to the new
solitons without using
exotic matter?

(Figure Credit: Van Den Broeck 1999)
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Further Steps

> Incorporate plasma
stress-energy dynamics

> Explore morphologies;
move beyond the
hyperbolic potential

> Insert a functional craft
> Formation/acceleration of

the soliton
> Low-energy experiment
> Explore horizon problems
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Summary

> General relativity permits superluminal warp
drives that obey the weak energy condition and
are sourced by conventional physics, contrary to
conventional wisdom

> The next step is to determine how far the energy
requirements can be reduced

> Followed by identifying creation/acceleration
mechanisms and preparation for experimental
verification
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Comparison with Previous Literature

> Literature before 2020
required exotic matter

> Olum (1999), Lobo &
Crawford (2003) claim
proof that this is
unavoidable

> Proofs are point-like,
collapse interior to a point

> Positive energy soliton is
too complex to be
collapsed, is destroyed by
point-like limit

∅
(Alcubierre Drive Image Credit: White 2013)
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Comparison with Recent Literature

> Recent papers by
Santiago, Schuster, and
Vissera state the soliton
total energy must vanish
(divergence theorem)

> The soliton structure has
a patchwork smoothness
that requires a similarly
patch-worked usage of
the divergence theorem

a arXiv:2106.05002v1, arXiv:2105.03079v1

 ∫r→∞QᐧdΣ = 0

 ∫planeQᐧdΣ ≠ 0
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