CALET on the ISS the first 5 years

16th Marcel Grossmann Meeting July 5-10, 2021

Pier Simone Marrocchesi University of Siena and INFN Pisa for the CALET Collaboration

CALET Calorimetric Electron Telescope

CALET instrument in a nutshell

CHD

IMC

TASC

Field of view: ~ 45 degrees (from the zenith)

45 cm

1 TeV electron shower

PM^{*}

PMT

TASC-FEC

APD/PD

CHD-FEC

MAPMT

IMC-FEC

Geometrical Factor: ~ 1,040 cm²sr (for electrons) Thick

Thickness: 30 $\overline{X_{0,}}$ **1.2** $\overline{\lambda_{I}}$

- 2 x 14 plastic scintillating paddles
- single element charge ID from p to Fe and above (Z = 40)
- charge resolution ~0.15-0.3 e

IMC – Imaging Calorimeter

- Scifi + Tungsten absorbers: $3 X_0$ at normal incidence
- 8 x 2 x 448 plastic scintillating fibers (1mm) readout individually
- Tracking (~0.1° angular resolution) + Shower imaging

TASC – Total Absorption Calorimeter 27 $X_{0,}$ 1.2 λ_{I}

- 6 x 2 x 16 lead tungstate (PbWO₄) logs
- Energy resolution: ~2 % (>10GeV) for e , γ ~30-35% for p, nuclei
- e/p separation: ~10⁻⁵

Charge Identification with CHD and IMC

Single element identification for p, He and light nuclei is achieved by CHD+IMC charge analysis.

LE: 63. < E_TASC/GeV < 200.

Flight
EPICS (all)

Deviation from Z^2 response is corrected both in CHD and IMC using a core + halo ionization model (Voltz)

MG16, July 5-10, 2021

Pier Simone Marrocchesi

30

Examples of CALET event candidates

electron ~3 TeV

Energy Measurement in a wide dynamic range 1-10⁶ MIPs

MG16, July 5-10, 2021

The first five years of CALET observations on the ISS

Cosmic-ray proton spectrum 2018: CALET confirms proton spectral hardening 3×10⁴ × Flux [m⁻² sr⁻¹ s⁻¹ GeV^{1.7}] above a few hundred GeV with a deviation from a CALET Collaboration, Phys. Rev. Lett. 122, 181102 Highlighted as "Editor's Suggestion" single power law at $>3\sigma$ 2×10⁴ CALET covers the whole range 50 GeV -10 TeV with the same instrument 10^{4} Proton Spectrum E^{2.7} 8×10³ BESS-TeV ATIC-2 7×10^3 CREAM-I 6×10³ PAMELA AMS-02 CREAM-III 5×10³ NUCLEON (IC) NUCLEON (KLEM) 4×10³ CALET-2018 uncertainty band (stat. + syst.) for CALET 3×10³ I I I I I I I I I I I I I I LILL 10³ 10² 10⁴ 10⁵ 10 Kinetic Energy [GeV] 10 MG16, July 5-10, 2021 Pier Simone Marrocchesi

Cosmic-ray proton spectrum

Cosmic-ray proton spectrum

- $E_{break} = 13.6^{+4.1}_{-4.8} \text{ TeV}$ with ~30% error.
- DAMPE flux is consistent with AMS-02 and CALET up to 200 GeV. Above, the flux is higher (close to the limit of the systematic error band).

STAY TUNED FOR CALET UPDATES AT ICRC 2021 !

Spectra of cosmic-ray nuclei from C to Fe

Iron – analysis (charge selection)

Charge measurement from the two CHD layers

Iron spectrum

Flux x E^{2.6} vs kinetic energy per nucleon

Jan 1, 2016 – May 2020

Iron spectral shape and normalization

AMS-02 Phys. Rev. Lett. 126, 041104 (2021)

CALET Phys. Rev. Lett. 126, 241101 (2021)

Flux normalization:

- consistent with ATIC 02 and TRACER at low energy and with CNR and HESS at high energy
- in tension with AMS-02 and SANRIKU (balloon)

Spectral shape:

- CALET E^{2.7} x Flux vs kinetic energy/n normalized to AMS-02:
 - similar spectral shape
 - comparable errors above 200 GeV/n

Spectral hardening:

CALET iron data are consistent with an SPL spectrum up to 2 TeV/n. Beyond this limit, the present statistics and large systematics do not allow to draw a significant conclusion on a possible deviation from a single power law

MG16, July 5-10, 2021

Ultra-heavy cosmic-ray nuclei (26 < Z ≤ 40)

Measurement of the relative abundances of elements above Fe through 40Zr

The CALET UH element ratios relative to 26Fe are consistent with SuperTIGER and ACE abundances.

MG16, July 5-10, 2021

CALET γ-ray Sky (>1GeV) and GRBs

- Effective area ~400 cm² above 2 GeV
- Angular resolution < 0.2° above 10 GeV)
- Energy resolution ~5% at 10 GeV

Gamma-ray sky map LE- γ trigger (E >1 GeV)

Identified bright point-sources (E >1 GeV)

MG16, July 5-10, 2021

Pier Simone Marrocchesi

2.44-01

2.14-01

1.7e-01

Space Weather Phenomena with CALET

In addition to the aforementioned astrophysics goals, CALET is able to provide a continuous monitoring of space weather phenomena affecting the near-Earth environment, including

solar energetic particles (SEPs) at high geomagnetic latitudes
inner-belt protons in the South-Atlantic anomaly (SAA) region
relativistic electron precipitation (REP) events in the inner boundary of the outer radiation belt

MG16, July 5-10, 2021

Solar modulation

- Since the start of observations in 2015/10, a steady increase in the 1-10 GeV all-electron flux has been observed to present
- In the past two years, the flux has reached the maximum flux observed with PAMELA during the previous solar minimum period

Main science goals and status of the analysis

- Unravel CR acceleration and propagation
- Search for nearby sources and dark matter

Scientific Objectives	Observables	Energy Reach	Reported Rsnge	Reference
Cosmic-ray origin and acceleration	Electron spectrum	1 GeV – 20 TeV	11 GeV – 4.8 TeV	published in PRL 120, 261102 (2018)
	Proton spectrum	10 GeV – 1 PeV	50 GeV – 10 TeV	published in PRL 122, 181102 (2019)
	Carbon and oxygen spectra	10 GeV – 1 PeV	10 GeV/n – 2.2 TeV/n	published in PRL 125, 251102 (2020)
	Iron spectrum	10 GeV – 1 PeV	50 GeV/n – 2 TeV/n	published in PRL 126, 241101 (2021)
	Elemental spectra of primaries	10 GeV – 1 PeV	10 GeV – 100 TeV	preliminary (see ICRC 2019, 034)
	Ultra-heavy abundances	> 600 MeV/n	> 600 MeV/n	preliminary (see APS 2020 L10.00006)
Galactic CR propagation	B/C and sub-Fe/Fe ratios	some TeV/n	to 200 GeV/n	preliminary (see ICRC 2019)
Nearby CR sources	Electron spectrum	100 GeV – 20 TeV	to 5 TeV	preliminary (see ICRC 2019)
Dark matter	Signatures in electron/gamma spectra	100 GeV – 20 TeV	to 5 TeV	ApJL 829:L20 (2016)
Gamma rays	Diffuse & point sources	1 GeV – 1 TeV	1 GeV – 1 TeV	ApJS 238:5 (2018)
Heliospheric physics	Solar modulation (low energy electrons)	1 GeV – 10 GeV	1 GeV – 10 GeV	see, e.g., ICRC 2019, 112
Gamma-ray transients	GW follow-up and GRB analysis	7 keV – 20 MeV	100 GeV (ECAL)	ApJL 829:L20 (2016)
Space weather	Relativistic electron precipitation	> 1.5 MeV	> 1.5 MeV	Geophys. Res. Lett., 43, 4119 (2016)

MG16, July 5-10, 2021

Summary and Future Prospects

- □ CALET was successfully launched on Aug. 19th, 2015
- □ More than 5.5 years of excellent performance and remarkable stability of the instrument
- □ Linearity in the energy measurements established up to 10⁶ MIP
- Continuous on-orbit calibration updates
- HE trigger operational for > 2000 days with > 85% live time fraction
- Total number of > GeV triggers ~2.7 billion

Extended operations approved by JAXA/NASA/ASI in March 2021 through the end of 2024

STAY TUNED for the analysis updates at ICRC 2021 !

Pier Simone Marrocchesi

[Astropart. Phys. 91, 1 – 10 (2017)]