Synchrotron and SSC emission components in GRBs detected at VHEs

Jagdish C. Joshi School of Astronomy and Space Science, Nanjing University, China

16th Marcell-Grossmann Meeting

Collaborators: Soebur Razzaque, CAPP, Johannesburg

05/July/2021

Vikas Chand, Nanjing University, China

Outline

- Afterglow Emission in GRBs
- Synchrotron and Synchrotron self-Compton (SSC) Model
- HE Gamma-ray afterglow components in GRBs
- Discovery of VHE component
 - Implication for radiative models
- Summary and Conclusions

Blastwave Expansion: Shock Formation

Expansion due to radiation pressure:

$$\begin{cases} R_0 \approx 10^7 \text{ cm}, \quad L \sim 10^{52} \text{erg/s} \\ L = 4\pi r_0^2 \sigma T^4, \quad T = 1.7 \text{MeV} \end{cases}$$

External Shocks form when:

$$\frac{E_k}{2} = \Gamma_0^2 M_{\rm sw} c^2$$

3

Blastwave: Self-similar Evolution

Afterglow Model Parameters:

- **E**_k : Isotropic equivalent kinetic energy
- **F**₀ : Bulk Lorentz factor
- **n** : Circumburst medium density
- **p** : Spectral index of accelerated particles
- $\boldsymbol{\epsilon}_{B,}\boldsymbol{\epsilon}_{e}$: Fraction of shock energy going to electrons and magnetic field.
- Total shock energy is distributed among particles and magnetic fields.

$$\boldsymbol{\epsilon}_{B} + \boldsymbol{\epsilon}_{e} + \boldsymbol{\epsilon}_{A} \sim \boldsymbol{1}$$

Blastwave: Evolution Scenarios

Expected for massive stars with substantial mass loss in stellar wind

External Shocks: Synchrotron Emission

Cooling of electrons

Cooling of protons (Less luminous!!)

More on p-Sync

Zhang & Meszaros (2001)

Sari, Piran & Narayan (1998), ApJL 497, 17 Zhang & Meszaros (2001), ApJ 559,110 Piran & Nakar (2010) ApJL 718, 63

External Shocks: Synchrotron Emission

10⁻²

10⁸

'v_m

 10^{12}

v (Hz)

10¹⁴

10¹⁶

10¹⁰

More on p-Sync

Zhang & Meszaros (2001)

Sari, Piran & Narayan (1998), ApJL 497, 17 Zhang & Meszaros (2001), ApJ 559,110 Piran & Nakar (2010) ApJL 718, 63 10¹⁸

SSC Emission: Radio to TeV Radiation

Sari, Piran & Narayan (1998), ApJL 497, 17 Zhang & Meszaros (2001), ApJ 559,110 Piran & Nakar (2010) ApJL 718, 63

Radio to TeV Detectors

- AGILE, INTEGRAL, Konus-Wind (gamma-ray), SVOM (X-ray), AstroSAT (X-ray), nuSTAR (X-ray) and Radio detectors etc.
- HESS(2003), MAGIC(2004), VERITAS(2005), HAWC(2013), LHASSO(2019) and CTA. (Few x 100 GeV – Few x 100 TeV).
- Swift BAT locates the GRB and then the afterglow emission is followed.
- Swift (2004 onwards):
 - Fermi (2008 onwards):

Burst Alert Telescope(BAT, 15-150 keV)X-ray telescope(XRT, 0.3-10 keV)Optical telescope(UVOT, 170-600 nm).

Gamma-ray burst moniter (GBM, 8 keV – 30 MeV) Large Area Telescope (LAT, 20 MeV- 300 GeV).

0.1-100 GeV Gamma-ray Afterglow Components in GRBs

Afterglow Emission: GRB 090510

- A short GRB, z=0.903,
- Lepto-hadronic model for MW emission,
- >100 MeV: p-sync,
- X-rays and UV: e_sync

E _k (Erg)	2 x 10 ⁵⁵
Γ ₀	2400
ε _e	0.0001
ε _p	0.5
ε	0.3
n (cm³)	3

Afterglow Emission: GRB 130427A

- A long GRB, z=0.34,
- 73 GeV photon at T₀+19s,
- 95 GeV photon at T₀+244s,
- Brightest X-ray light curve,
- Afterglow via SSC model.

E _k (Erg)	2 x 10 ⁵³
Γ ₀	200
ε _e	0.6
ε _B	10 ⁻⁵
n (cm³)	1

Tam et al. (2013), ApJL 771, 13 Liu, R. et al. (2013), ApJL 773, 20

Discovery of VHE (0.1-100 TeV) Component: Cherenkov Telescopes

Multiwavelength Observations

GRB 190114C

$$T_{90} > 100 \mathrm{s}, \ z \sim 0.4245$$

 $E_{\gamma,\mathrm{iso}}^{\mathrm{prompt}} \sim 3 \times 10^{53} \mathrm{erg}$

MAGIC Detection (0.3 -1 TeV)

~55 s onwards

$$E_{\gamma, \rm iso, VHE}^{\rm afterglow} \sim 10^{-3} E_{\gamma, \rm iso}^{\rm prompt}$$

Multiwavelength Observations

 $T_{90} > 100 \mathrm{s}, \ z \sim 0.4245$ $E_{\gamma,\mathrm{iso}}^{\mathrm{prompt}} \sim 3 \times 10^{53} \mathrm{erg}$

GRB 190114C

MAGIC Detection (0.3 -1 TeV) ~55 s onwards

$$E_{\gamma,\rm iso,VHE}^{\rm afterglow} \sim 10^{-3} E_{\gamma,\rm iso}^{\rm prompt}$$

Spectral Energy Distribution

MAGIC Collaboration (2019), Nature 575, 455 MAGIC Collaboration (2019), Nature 575, 459

Multiwavelength Observations

GRB 180720B

$T_{90} \sim 49 \mathrm{s},$	$z \sim 0.653$
$E_{\gamma,\mathrm{iso}}^{\mathrm{prompt}} \sim 6$	$\times 10^{53} \mathrm{erg}$

HESS Detection (0.1 -0.5 TeV) ~10 hr onwards

 $E_{\gamma, \text{iso}, \text{VHE}}^{\text{afterglow}}$

 $\sim 10^{-6} E_{\gamma,\rm iso}^{\rm prompt}$

Multiwavelength Observations

Data is taken from A. Taylor's talk slides, 10th LHASSO meeting at Nanjing 2020 ¹⁸

HESS Collaboration (2019), Nature 575, 464

VHE in Low-Luminosity GRB

GRB 190829A

$$T_{90} \sim 6$$
s, $z \sim 0.0785$
 $E_{\gamma, \text{iso}}^{\text{prompt}} \sim 10^{50} \text{erg}$

HESS Detection (0.2 - 4 TeV)

~4.3 hr onwards

VHE in Low-Luminosity GRB

GRB 190829A

$$T_{90} \sim 6$$
s, $z \sim 0.0785$
 $E_{\gamma, \text{iso}}^{\text{prompt}} \sim 10^{50} \text{erg}$

HESS Detection (0.2 - 4 TeV)

~4.3 hr onwards

$$E_{\gamma,\mathrm{iso,VHE}}^{\mathrm{afterglow}} \sim 10^{-5} E_{\gamma,\mathrm{iso}}^{\mathrm{prompt}}$$

Challenges for 1 zone SSC model.

GRB 190114C: SSC Model

SSC in Thomson regime

$$Y \equiv \frac{L_{\rm SSC}}{L_{\rm Sv}} \sim 1.3 t_2^{-0.1}$$

$$au_{\gamma\gamma} < 1, \ \ au_{\rm EBL} \approx 200 {
m GeV}$$

MAGIC Collaboration (2019), Nature 575, 459 Joshi & Razzaque (2021), MNRAS 505, 2

GRB 190114C: Light Curves

E _k (Erg)	3 x 10 ⁵⁴
Γ ₀	300
р	2.15
ε _e	0.03
ε	0.01
A _*	0.03

MAGIC Collaboration (2019), Nature 575, 459 Joshi & Razzaque (2021), MNRAS 505, 2

GRB 190114C: Refreshed Shock @ Optical

MAGIC Collaboration (2019), Nature 575, 459 Rees & Mészáros (1998) ApJL 496 J. Granot et al. (2003), Nature 426, 2

GRB 180720B: ISM Medium

ISM

$f_{ u,\max} \propto t^0,$	$f_{ u, m SSC}^{ m max} \propto t^{1/4}$
----------------------------	--

Wind

$$f_{\nu,\max} \propto t^{-1/2}, \quad f_{\nu,SSC}^{\max} \propto t^{-1}$$

GRB 180720B: ISM Medium

X-ray Light Curves: VHE GRBs

GRBs in TeV Catalogue

- 3 Confirmed VHE long GRBs,
- 2 long GRBs, data is not public,
- 1 short GRB, 3σ significance

Data is taken from SWIFT-XRT Database. https://www.swift.ac.uk/analysis/xrt/ Currently GRB TeV Catalogue has appended 5 sources. http://tevcat.uchicago.edu/

X-ray Light Curves: VHE GRBs

Data is taken from SWIFT-XRT Database. https://www.swift.ac.uk/analysis/xrt/ Currently GRB TeV Catalogue has appended 5 sources. http://tevcat.uchicago.edu/

Summary

- If the VHE energy component has luminosity similar to X-ray flux, SSC model is sufficient to explain the multiwavelength observations, at least for now.
- Low-Luminosity GRBs are promising sources in VHEs.

Thank you for your attention

Jet Composition and Radiation Channels

1-70 GeV PL Component

- Required BLF ~ 1000,
- Could be signature of Jet-composition.