Sixteenth Marcel Grossmann Meeting - Parallel session The Early Universe

Constraining beyond ACDM models with 21cm intensity mapping forecast observations combined with latest CMB data

Maria Berti Astroparticle PhD student 07 July. 2021

Introduction

ACDM model

Is it enough?

- What are Dark Matter and Dark Energy?
- Tensions on H_0 , σ_8/S_8 , A_L

Credit: NASA/WMAP Science Team

- Cosmological Constant problem
- Coincidence problem

State-of-the-art

- All the results are broadly compatible with ACDM
- Future observations (Euclid, SKAO,
 - \ldots) \rightarrow improve constraints
- New observables \rightarrow 21cm signal power spectrum

Overview

Constraining beyond ACDM models with 21cm intensity mapping forecast observations combined with latest CMB data

Supervisor: **M. Viel** Collaborators: M. Spinelli, B. S. Haridasu, A. Silvestri

Effective Field Theory for Cosmic Acceleration

Introduced for INFLATION (Creminelli et al., 2006, Cheung et al., 2008) \rightarrow applied to the LATE TIME COSMIC ACCELERATION (Creminelli et al., 2009, Gubitosi, Piazza, and Vernizzi, 2013, Bloomfield et al., 2013)

 \rightarrow description of Large Scale Structure (EFTofLSS, Carrasco et al., 2012)

Introduced for INFLATION (Creminelli et al., 2006, Cheung et al., 2008) \rightarrow applied to the LATE TIME COSMIC ACCELERATION (Creminelli et al., 2009, Gubitosi, Piazza, and Vernizzi, 2013, Bloomfield et al., 2013)

 \rightarrow description of Large Scale Structure (EFTofLSS, Carrasco et al., 2012)

EFT action

Up to second order in perturbations in the Jordan frame:

$$S = \int d^4 x \sqrt{-g} \Biggl\{ \frac{m_0^2}{2} \left[1 + \Omega^{\text{EFT}}(\tau) \right] R + \Lambda(\tau) - c(\tau) a^2 \delta g^{00} \\ + \frac{M_2^4(\tau)}{2} \left(a^2 \delta g^{00} \right)^2 - \frac{\bar{M}_1^3(\tau)}{2} a^2 \delta g^{00} \delta K \\ - \frac{\bar{M}_2^2(\tau)}{2} \left(\delta K \right)^2 - \frac{\bar{M}_3^2(\tau)}{2} \delta K_{\nu}^{\mu} \delta K_{\mu}^{\nu} \\ + m_2^2(\tau) (g^{\mu\nu} + n^{\mu} n^{\nu}) \partial_{\mu} \left(a^2 g^{00} \right) \partial_{\nu} \left(a^2 g^{00} \right) \\ + \frac{\hat{M}^2(\tau)}{2} a^2 \delta g^{00} \delta R^{(3)} + \dots \Biggr\} + S_m$$

EFT action

Up to second order in perturbations in the Jordan frame:

$$\begin{split} S &= \int \mathrm{d}^4 x \sqrt{-g} \Biggl\{ \frac{m_0^2}{2} \left[1 + \Omega^{\mathrm{EFT}}(\tau) \right] R + \Lambda(\tau) - c(\tau) a^2 \delta g^{00} \\ &+ \frac{M_2^4(\tau)}{2} \left(a^2 \delta g^{00} \right)^2 - \frac{\bar{M}_1^3(\tau)}{2} a^2 \delta g^{00} \delta K \\ &- \frac{\bar{M}_2^2(\tau)}{2} \left(\delta K \right)^2 - \frac{\bar{M}_3^2(\tau)}{2} \delta K_{\nu}^{\mu} \delta K_{\mu}^{\nu} \\ &+ m_2^2(\tau) (g^{\mu\nu} + n^{\mu} n^{\nu}) \partial_{\mu} \left(a^2 g^{00} \right) \partial_{\nu} \left(a^2 g^{00} \right) \\ &+ \frac{\hat{M}^2(\tau)}{2} a^2 \delta g^{00} \delta R^{(3)} + \dots \Biggr\} + S_m \end{split}$$

Full EFT is described by 9 time-dependent EFT functions

- $\{\Omega^{\text{EFT}}, \Lambda, c\}$ first order \rightarrow also background evolution
- + $\{M_2^4, \, \bar{M}_1^3, \, \bar{M}_2^2, \, \bar{M}_3^2, \, m_2^2, \, \hat{M}^2\}$ second order ightarrow only perturbations
- + ACDM limit \rightarrow all EFT functions are 0

Testing MG/DE models in the EFT formalism

Latest constraints

- studied in Raveri et al., 2014, Planck Collaboration et al., 2016, Planck Collaboration et al., 2018
- constraints from Planck, Weak Lensing, BAO, RSD data
- no significant evidence beyond ACDM

Testing MG/DE models in the EFT formalism

Latest constraints

- studied in Raveri et al., 2014, Planck Collaboration et al., 2016, Planck Collaboration et al., 2018
- constraints from Planck, Weak Lensing, BAO, RSD data
- no significant evidence beyond ACDM

 \rightarrow Could a new observable such as $P_{21}(k, z)$ help constrain such models beyond \land CDM?

21cm intensity mapping

The 21cm signal

3 fundamental temperatures:

- \cdot T_{γ} the CMB temperature
- T_k the gas (IGM) temperature
- T_s the spin temperature \rightarrow sets the population of the hyperfine level with respect to the ground state
- $\rightarrow T_b$ the brightness temperature

$$\frac{n_1}{n_0} = \frac{g_1}{g_0} e^{-h\nu_{21}/kT_s}$$

Evolution of the 21cm signal

¹Mesinger, Greig & Sobacchi, 2016

Evolution of the 21cm signal

¹Mesinger, Greig & Sobacchi, 2016

Line intensity mapping

- Look at the total intensity of the emission line in a large 3d pixel (angle and frequency)
- Pixel will have integrated

emission from multiple galaxies

- relatively low-budget technique
- Challenging foreground cleaning

• wide redshift range $1 + z = \frac{\nu_{em}}{\nu_{obs}}$

Credit: NASA / LAMBDA Archive Team

- Look at the total intensity of the emission line in a large 3d pixel (angle and frequency)
- Pixel will have integrated

emission from multiple galaxies

- relatively low-budget technique
- Challenging foreground cleaning

wide redshift range
$$1 + z = \frac{\nu_{em}}{\nu_{obs}}$$

The 21cm power spectrum

We can model it as²

 $P_{21}(z, k) = \bar{T}_b^2(z) (b_{\rm HI}(z) + f(z))^2 P_m(z, k)$

where

- + $\bar{T}_{b}^{2}(z)$ is the mean brightness temperature
- $\cdot b_{\mathrm{HI}}(z)$ is the HI bias
- f(z) is the linear growth rate
- $P_m(z,k)$ is the matter power spectrum

 \rightarrow in good agreement with hydro-dynamical simulation results (*Villaescusa-Navarro et al., 2018*)

²Kaiser, 1987, Bacon et al., 2019

Present and future instruments

Currently taking data (some examples):

- · CHIME (Canada) \rightarrow interferometer array
- \cdot FAST (China) \rightarrow single dish
- MeerKAT (South Africa) \rightarrow single dish

The Square Kilometer Array Organization (SKAO):

- + SKAO-MID: ~ 200 dishes (South Africa)
- + SKAO-LOW: > 10^5 simple dipole antennas (Western Australia)
- \rightarrow more dishes and possibly higher redshifts

Credit: www.skatelescope.org/

Intensity mapping with MeerKAT

Credit: www.sarao.ac.za

MeerKLASS (Santos et al., 2017)

- 4000 deg², 4000 h
- IM for Cosmology
- Radio Continuum HI galaxies

Science Verification Data (Wang et al., 2021)

Antennas	All 64 MeerKAT dishes
Observation mode	Single-dish
Frequency range	0.856-1.712 GHz

ightarrow already taking data

 \rightarrow we build a very realistic data set of future MeerKAT observations at z = 0.39

First results with MeerKAT

Likelihood implementation

Bayes theorem

 $\mathcal{P}(\boldsymbol{\alpha}|D) \propto \mathcal{L}(D|\boldsymbol{\alpha}) \mathcal{P}(\boldsymbol{\alpha})$

 $oldsymbol{lpha}$ set of parameters, D set of observations

$$\begin{split} \mathcal{L}(D|\boldsymbol{\alpha}) \text{ LIKELIHOOD function} &\to compute \\ \mathcal{P}(\boldsymbol{\alpha}) \text{ PRIOR distribution} &\to guess \\ \mathcal{P}(\boldsymbol{\alpha}|D) \text{ POSTERIOR distribution} &\to sample \end{split}$$

1. Confidence Regions (68%, 95%)

2. Marginalized posterior

3. Confidence levels (68%)

Parameter	Planck
$\Omega_m \dots \dots$ $w_0 \dots \dots$	$\begin{array}{c} 0.341\substack{+0.022\\-0.043}\\-0.892\substack{+0.055\\-0.11}\end{array}$

 w_0

Ingredients to compute constraints from a new data set

To compute constraints on model parameters for a generic cosmological model we need:

• compute theoretical predictions $\alpha \rightarrow CAMB/EFTCAMB^3$

 \hookrightarrow model with P_{21} $P_{21}(z, k) = \overline{T}_b^2(z)(b_{\mathrm{HI}}(z) + f(z))^2 P_m(z, k)$

- observations $D \rightarrow \text{construct}$ a mock data set
- · compute $\mathcal{L}(D|oldsymbol{lpha})
 ightarrow$ multivariate Gaussian
- a MCMC code to sample the parameter space \rightarrow *CosmoMC/EFTComsoMC*⁴

EFTCAMB/EFTComsoMC → new module twentyonepk.f90 (Fortran 2008 language)

³Hu et al., 2014a, Hu et al., 2014b

⁴Raveri et al., 2014

Errors

- assume MeerKAT observation
- \cdot 64 single dishes, 2000 deg² sky area
- + at redshift z = 0.39

CENTRAL POINTS

• ACDM theory prediction randomly scattered

Results

Studied Models

We test the P_{21} likelihood in the following frameworks:

- reference ACDM constraints
- we study the effect of P_{21} alone and combined with CMB Planck data
- two different *pure* EFT models described only by the function $\Omega^{\text{EFT}}(a)$

Label	Description
Planck 2018	CMB data from Planck 2018: ⁵ TT, TE, EE power spectra + low polarization (lowE) data + lensing
$P_{21} (z = 0.39)$	mock data set of MeerKAT forecast observations at redshift $z=0.39$
$f\sigma_8 + H + D_A$	or background, additional background and struc- ture formation mock data sets at $z=0.39$ inferred from higher redshift IM forecast

⁵http://pla.esac.esa.int/pla/#home

Par.	$P_{21} (z = 0.39)$	+ $f\sigma_8 + H + D_A$
$\begin{array}{c} \Omega_b h^2 \\ \Omega_c h^2 \\ n_s \ \dots \end{array}$	$\begin{array}{c} 0.038 \pm 0.015 \\ 0.162 \substack{+0.050 \\ -0.033} \\ < 0.959 \end{array}$	$\begin{array}{c} 0.0226 \pm 0.0035 \\ 0.1227 \pm 0.0081 \\ 0.951 \substack{+0.072 \\ -0.085 \end{array}$
<i>H</i> ₀	> 73.6	67.1 ± 1.3

Remarks

- cannot constrain all the cosmological parameters, we fixed au

Par.	$P_{21} \left(z = 0.39 \right)$	+ $f\sigma_8 + H + D_A$
$\begin{array}{c} \Omega_b h^2 \\ \Omega_c h^2 \\ n_s \ \dots \end{array}$	$\begin{array}{c} 0.038 \pm 0.015 \\ 0.162 \substack{+0.050 \\ -0.033} \\ < 0.959 \end{array}$	$\begin{array}{c} 0.0226 \pm 0.0035 \\ 0.1227 \pm 0.0081 \\ 0.951 \substack{+0.072 \\ -0.085} \end{array}$
<i>H</i> ₀	> 73.6	67.1 ± 1.3

- cannot constrain all the cosmological parameters, we fixed au
- \cdot marked degeneracy between $\Omega_c h^2$ and H_0

Par.	$P_{21} (z = 0.39)$	+ $f\sigma_8 + H + D_A$
$\begin{array}{c} \Omega_b h^2 \\ \Omega_c h^2 \\ n_s \ \dots \end{array}$	$\begin{array}{c} 0.038 \pm 0.015 \\ 0.162 \substack{+0.050 \\ -0.033} \\ < 0.959 \end{array}$	$\begin{array}{c} 0.0226 \pm 0.0035 \\ 0.1227 \pm 0.0081 \\ 0.951 \substack{+0.072 \\ -0.085} \end{array}$
<i>H</i> ₀	> 73.6	67.1 ± 1.3

- cannot constrain all the cosmological parameters, we fixed au
- marked degeneracy between $\Omega_c h^2$ and H_0
- adding the background data significantly improve the constraints

Par.	$P_{21} (z = 0.39)$	+ $f\sigma_8 + H + D_A$
$\begin{array}{c} \Omega_b h^2 \\ \Omega_c h^2 \\ n_s \ \dots \end{array}$	$\begin{array}{c} 0.038 \pm 0.015 \\ 0.162 \substack{+0.050 \\ -0.033} \\ < 0.959 \end{array}$	$\begin{array}{c} 0.0226 \pm 0.0035 \\ 0.1227 \pm 0.0081 \\ 0.951 \substack{+0.072 \\ -0.085} \end{array}$
<i>H</i> ₀	> 73.6	67.1 ± 1.3

- cannot constrain all the cosmological parameters, we fixed au
- marked degeneracy between $\Omega_c h^2$ and H_0
- adding the background data significantly improve the constraints
- with only 21 + 3 points we get a competitive constraints on H_0

Par.	Planck 2018	+ $P_{21} (z = 0.39)$
$\begin{array}{c} \Omega_b h^2 \\ \Omega_c h^2 \\ n_s \ \dots \end{array}$	$\begin{array}{c} 0.02237 \pm 0.00014 \\ 0.1201 \pm 0.0012 \\ 0.9650 \pm 0.0041 \end{array}$	$\begin{array}{c} 0.02236 \pm 0.00011 \; (-24\%) \\ 0.12004 \pm 0.00046 \; (-61\%) \\ 0.9651 \pm 0.0031 \; (-25\%) \end{array}$
<i>H</i> ₀	67.32 ± 0.53	$67.32 \pm 0.16 \ (-69\%)$

Remarks

• significant improvement on $\Omega_c h^2$ and H_0

Par.	Planck 2018	+ $P_{21} (z = 0.39)$
$\begin{array}{c} \Omega_b h^2 \\ \Omega_c h^2 \\ n_s \ \dots \end{array}$	$\begin{array}{c} 0.02237 \pm 0.00014 \\ 0.1201 \pm 0.0012 \\ 0.9650 \pm 0.0041 \end{array}$	$\begin{array}{c} 0.02236 \pm 0.00011 \; (-24\%) \\ 0.12004 \pm 0.00046 \; (-61\%) \\ 0.9651 \pm 0.0031 \; (-25\%) \end{array}$
<i>H</i> ₀	67.32 ± 0.53	$67.32 \pm 0.16 \ (-69\%)$

- + significant improvement on $\Omega_c h^2$ and H_0
- $\Omega_c h^2$ and H_0 anti-correlated from Planck 2018 data

Par.	Planck 2018	+ $P_{21} (z = 0.39)$
$\begin{array}{c} \Omega_b h^2 \\ \Omega_c h^2 \\ n_s \ \dots \end{array}$	$\begin{array}{c} 0.02237 \pm 0.00014 \\ 0.1201 \pm 0.0012 \\ 0.9650 \pm 0.0041 \end{array}$	$\begin{array}{c} 0.02236 \pm 0.00011 \; (-24\%) \\ 0.12004 \pm 0.00046 \; (-61\%) \\ 0.9651 \pm 0.0031 \; (-25\%) \end{array}$
H_0	67.32 ± 0.53	67.32 ± 0.16 (-69%)

- significant improvement on $\Omega_c h^2$ and H_0
- $\Omega_c h^2$ and H_0 anti-correlated from Planck 2018 data
- adding BAO data does not produce relevant effects

Par.	Planck 2018	+ $P_{21} (z = 0.39)$
${\Omega_b h^2 \over \Omega_c h^2}$.	$\begin{array}{c} 0.02234 \pm 0.00015 \\ 0.1203 \pm 0.0012 \end{array}$	$\begin{array}{c} 0.02237 \pm 0.00011 \ (-26\%) \\ 0.12003 \pm 0.00046 \ (-63\%) \end{array}$
$H_0 \ldots$	67.21 ± 0.55	$67.33 \pm 0.17 \; (-70\%)$
$\Omega_0^{\rm EFT}$	< 0.0147	< 0.0135 (-11%)

Remarks

• P_{21} (z = 0.39) alone has no significant constraining power on EFT parameters

Par.	Planck 2018	+ $P_{21} (z = 0.39)$
${\Omega_b h^2 \over \Omega_c h^2}$.	$\begin{array}{c} 0.02234 \pm 0.00015 \\ 0.1203 \pm 0.0012 \end{array}$	$\begin{array}{c} 0.02237 \pm 0.00011 \; (-26\%) \\ 0.12003 \pm 0.00046 \; (-63\%) \end{array}$
$H_0 \ldots$	67.21 ± 0.55	$67.33 \pm 0.17 \; (-70\%)$
$\Omega_0^{\rm EFT}$	< 0.0147	< 0.0135 (-11%)

- P_{21} (z = 0.39) alone has no significant constraining power on EFT parameters
- constraints on cosmological parameters remain unaffected

Par.	Planck 2018	+ $P_{21} (z = 0.39)$
${\Omega_b h^2 \over \Omega_c h^2}$.	$\begin{array}{c} 0.02234 \pm 0.00015 \\ 0.1203 \pm 0.0012 \end{array}$	$\begin{array}{c} 0.02237 \pm 0.00011 \ (-26\%) \\ 0.12003 \pm 0.00046 \ (-63\%) \end{array}$
$H_0 \ldots$	67.21 ± 0.55	$67.33 \pm 0.17 \; (-70\%)$
$\Omega_0^{\rm EFT}$	< 0.0147	< 0.0135 (-11%)

- P_{21} (z = 0.39) alone has no significant constraining power on EFT parameters
- constraints on cosmological parameters remain unaffected
- results compatible with results in literature

Par.	Planck 2018	+ $P_{21} (z = 0.39)$
${\Omega_b h^2 \over \Omega_c h^2}$.	$\begin{array}{c} 0.02234 \pm 0.00015 \\ 0.1203 \pm 0.0012 \end{array}$	$\begin{array}{c} 0.02237 \pm 0.00011 \ (-26\%) \\ 0.12003 \pm 0.00046 \ (-63\%) \end{array}$
$H_0 \ldots$	67.21 ± 0.55	$67.33 \pm 0.17 \; (-70\%)$
$\Omega_0^{\rm EFT}$	< 0.0147	< 0.0135 (-11%)

- P_{21} (z = 0.39) alone has no significant constraining power on EFT parameters
- constraints on cosmological parameters remain
 unaffected
- results compatible with results in literature
- Planck 2018 + P_{21} (z = 0.39) improvement at the 10% level on errors of EFT parameters

Conclusions

Summary

Work done

- We extended the EFTCAMB/EFTCosmoMC codes by implementing a likelihood module fully integrated with original codes to test forecast 21cm Intensity Mapping observations
- We constructed a realistic data set at z = 0.39 from future MeerKAT observation settings
- We tested the impact of P_{21} likelihood on DE/MG models in the EFT framework

Summary

Work done

- We extended the EFTCAMB/EFTCosmoMC codes by implementing a likelihood module fully integrated with original codes to test forecast 21cm Intensity Mapping observations
- We constructed a realistic data set at z = 0.39 from future MeerKAT observation settings
- We tested the impact of P_{21} likelihood on DE/MG models in the EFT framework

Results

- Significant **improvement on** $\Omega_c h^2$, H_0 constraints from P_{21} combined with Early Universe probes, i.e. Planck 2018 CMB data
- Impact at the level of 10% on models beyond ACDM

Summary

Work done

- We extended the EFTCAMB/EFTCosmoMC codes by implementing a likelihood module fully integrated with original codes to test forecast 21cm Intensity Mapping observations
- We constructed a realistic data set at z = 0.39 from future MeerKAT observation settings
- We tested the impact of P_{21} likelihood on DE/MG models in the EFT framework

Results

- Significant **improvement on** $\Omega_c h^2$, H_0 constraints from P_{21} combined with Early Universe probes, i.e. Planck 2018 CMB data
- Impact at the level of 10% on models beyond ACDM

The road ahead

- Add observations from other redshift bins
- · Cross-correlation exploitation of intensity mapping and galaxy clustering observations
- extend the likelihood other beyond ACDM models, e.g. decaying dark matter