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FIG. 18. A comparison of weak lensing constraints on the ⇤CDM
model. Weak lensing of the CMB is shown in green, weak lensing
of galaxies in DES is shown in blue, and the combined DES 3⇥2pt
data is shown in black.
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FIG. 19. The DES ⇤CDM-optimized 3⇥2pt and cosmic shear, HSC
and KiDS cosmic shear, and KiDS lensing + BOSS+2dFLenS spec-
troscopic 3⇥2pt data results are over-plotted for the ⇤CDM model.
Unlike other comparisons in this work, these external survey data
have not been re-analyzed within a consistent model and prior space.
Thus, no direct or rigorous comparison can be made about data con-
sistency.

FIG. 20. Marginalized constraints on h and ⌦m in the ⇤CDM model
are compared to the SH0ES local determination of h. Planck CMB
data and the combination of BAO and BBN data provide compara-
ble uncertainties on h compared to the local constraint. Adding DES
3⇥2pt to BAO and BBN improves the constraint on h slightly due
to 3⇥2pt providing additional information on ⌦m, while the combi-
nation of DES 3⇥2pt and all non-local external data provide a con-
straint on h that is a factor of 3-4 more powerful than the local deter-
mination.
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COSMO+SLACS data set [97]). The Hubble tension may
indicate new physics and it is crucial to improve measure-
ments, revisit assumptions [e.g., 97, 98], check for consis-
tencies among different measurements, and invest in novel,
independent methods and probes [99, 100].

We can also constrain the value of h independently of CMB
data using a combination of BAO, BBN constraints on ⌦bh

2,
and DES 3⇥2pt measurements. Constraints on h and ⌦m in
⇤CDM are summarized in Fig. 20. The determination of h

using BAO and BBN is of similar constraining power to that
of the CMB and agrees very well with the CMB constraint on
h. Adding DES 3⇥2pt data slightly improves the constraint
on h and shifts it to higher values by about 1�. Combining
DES 3⇥2pt data with BAO, RSD, SNe Ia, and Planck CMB
(w/ lensing) leads to a marginalized constraint on h

h = 0.680
+0.004
�0.003 (0.681) (24)

that is 3-4 times more powerful than any current local mea-
surement of h. Constraints on other cosmological parameters
are summarized in Tables II & III. We find no significant im-
pact on the other cosmological parameters by adopting this
high-redshift anchor for the expansion rate vs a local prior on
the expansion rate from Ref. [93]. The final joint constraint
on h is consistent with the Planck- or BAO+BBN-only con-
straints and slightly less than 4� offset relative to the local h
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• Universe accelerates (Λ has fine-tuning and coincidence problems)

• Cosmic tensions (S8 and H0) and absence of obvious candidates

Why explore modified gravity?

Abbott et al (2021)

• Test laws of gravity on cosmic scales, up to 15 orders of magnitude 
larger than the Solar System where GR is well-established
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Figure 10. Left: Marginalized posterior contours in the �8 � ⌦m plane (inner 68% CL, outer 95% CL) in a universe with a time-dependent dark energy
equation of state for KiDS in green and Planck in red. For comparison, dashed contours assume fiducial ⇤CDM. Right: Marginalized posterior contours in the
w0 �wa plane for KiDS in green, Planck in red, JLA SNe in purple, KiDS+Planck in blue, and KiDS+Planck with informative H0 prior in grey (from Riess
et al. 2016). The dashed lines denote the ⇤CDM prediction.

constant, HMCODE accurately accounts for the impact of w0 � wa

models on the nonlinear matter power spectrum, as demonstrated
by the N-body simulations in Mead et al. (2016), covering �1.0 <

wa < 0.75 to z  1 and k  10 h Mpc�1 (using a modified
version of the GADGET-2 code of Springel 2005). HMCODE’s ex-
cellent performance, which is similar to that of HALOFIT over the
redshifts and scales considered, derives from the fact that the halo
model is firmly grounded in physical reality. As a result, the non-
linear power spectrum responds to cosmological extensions in a
reasonable way via the linear growth, halo mass function, and halo
mass-concentration relation, and has been shown to produce an ex-
cellent match to the non-linear response in simulations for a range
of other dark energy models with a time-varying equation of state
(Mead et al. 2016). For these reasons, we expect HMCODE to be
adequate over our full prior range.

Using HMCODE to describe the nonlinear matter power spec-
trum, we constrain the two degrees of freedom w0 and wa along
with the vanilla and lensing systematics parameters (and CMB de-
grees of freedom when applicable). In Figure 10, we show these
constraints in the �8 � ⌦m and w0 � wa planes. Similar to the
case where the equation of state is constant (Section 3.4), KiDS
and Planck overlap in the �8 �⌦m plane, and are no longer in ten-
sion in the S8 parameter (1� agreement). When accounting for the
full parameter space, log I = 0.82, which corresponds to ‘substan-
tial concordance’ between the KiDS and Planck datasets. More-
over, as shown in Figure 7, the Planck constraint on the Hubble
constant is wider than in ⇤CDM (0.65 < h < 1.0 at 95% CL,
where the upper bound is limited by the prior) and in agreement
with the Riess et al. (2016) direct measurement of H0. The KiDS
constraint on the intrinsic alignment amplitude is marginally wider
than in ⇤CDM, with �0.69 < AIA < 2.9 (95% CL), and this
improves to 0.13 < AIA < 2.8 (95% CL) for KiDS+Planck, and
0.27 < AIA < 2.1 (95% CL) for KiDS+Planck+H0.

When examining the constraints in the w0 � wa plane, KiDS
is in agreement with ⇤CDM, while Planck shows an approxi-
mately 2� deviation from a cosmological constant. Combining
KiDS+Planck gives an even larger deviation from the cosmological
constant scenario at 3.0�. Analogously to the constant w case (and
the discussion therein), imposing a Hubble constant prior pulls the

Figure 11. Marginalized posterior contours in the w0 � wa plane (inner
68% CL, outer 95% CL) for Planck combined with weak lensing, BAO,
and SN (JLA) measurements. We show the results for KiDS+Planck with a
±5� uniform prior on the Hubble constant from Riess et al. (2016) in grey.
We show BAO+Planck in pink, where the BAO measurements are from
6dFGS (Beutler et al. 2011), SDSS MGS (Ross et al. 2015), and BOSS
LOWZ/CMASS samples (Anderson et al. 2014). We show JLA+Planck in
blue, where the SN measurements are from Betoule et al. (2013, 2014).

KiDS+Planck+H0 contour towards ⇤CDM, but the prior also helps
decrease the area of the error contour such that the statistical devia-
tion from ⇤CDM is still significant at approximately 3� (precisely,
2.7�). This seeming preference of KiDS+Planck for evolving dark
energy is consistent with the supernova distance measurements of
the ‘Joint Light-curve Analysis’ sample (JLA, constructed from
SDSS-II, SNLS, and low-redshift samples of SN data, Betoule et al.
2013, 2014), and can be contrasted with the CFHTLenS+Planck
scenario, where Ade et al. (2016a) found that a Hubble constant
prior is sufficient to bring the CFHTLenS+Planck results in agree-
ment with ⇤CDM.

Given the 3� deviation from ⇤CDM, in Figure 11 we ex-
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Figure 10. Left: Marginalized posterior contours in the �8 – ⌦m plane (inner 68% CL, outer 95% CL) in a universe with a time-dependent dark energy
equation of state. We show the constraints from {⇠±, �t, P0/2} in brown, with conservative cuts to the data in cyan, and Planck CMB temperature in red. For
comparison, we also show dashed contours assuming fiducial ⇤CDM. Right: Marginalized posterior contours in the w0 – wa plane. The dashed horizontal
and vertical lines intersect at the ⇤CDM prediction.

6.4 Dark energy (w0 � wa)

6.4.1 Background

Following a deviation from the cosmological constant scenario,
there is no strong theoretical motivation to keep the dark energy
equation of state constant (e.g. Caldwell et al. 1998; Zlatev et al.
1999). We therefore also examine an evolving dark energy model
with a time-varying equation of state in the form of the ‘w0 � wa

parameterization’ (Chevallier & Polarski 2001; Linder 2003). Ex-
ecuting a Taylor expansion of the equation of state to first order in
the scale factor, a, we obtain

w(a) = w0 + (1 � a)wa, (23)

where w0 is the present equation of state, and wa = �dw/da|a=1

(also expressed as wa = �2dw/d ln a|a=1/2; Linder 2003).
While a positive wa increases w(a) with time, such that its im-

pact on the observables is qualitatively similar to that described for
a constant w > �1, the two {w0, wa} degrees of freedom allow for
a greater range of phenomenological scenarios to be realized. This
dark energy model was considered in the analysis of KiDS cosmic
shear in Joudaki et al. (2017b), where similar to the constant w sce-
nario it was found to alleviate the discordance between KiDS and
Planck, and between Riess et al. (2016) and Planck. In combining
KiDS and Planck with a uniform Riess et al. (2016) prior on the
Hubble constant, this model was further found moderately favored
compared to ⇤CDM (as evidenced by �DIC . �6). However,
considering theoretical stability conditions, the favored dark energy
region cannot be accommodated by minimally-coupled single-field
quintessence, but would seemingly require multiple scalar fields
(Peirone et al. 2017). We examine to what extent these results are
impacted by the galaxy-galaxy lensing and multipole power spec-
trum measurements.

6.4.2 Constraints on S8 and discordance with Planck

Similar to the constant w cosmology, our marginalized posterior
contours exhibit a discordance with Planck in the �8 – ⌦m plane
(Fig. 10). The S8 constraints are approximately 60% weaker than
in ⇤CDM, and 10-20% stronger than from cosmic shear alone. The

discordances are encapsulated through T (S8) = 1.7� for fiducial
data cuts, and T (S8) = 1.9� with conservative cuts (in contrast to
T (S8) = 0.9� between KiDS and Planck alone). Accounting for
the full parameter space with the log I statistic, the conservative
scenario is only weakly discordant with Planck, while the fiducial
scenario is decisively discordant (as the stronger constraints allow
for potentially larger discordances). In other words, the substan-
tial concordance between KiDS and Planck alone in Joudaki et al.
(2017b) is broken by the improved constraints along the lensing de-
generacy direction by the multipole power spectra (again assuming
our shot noise prior is approximately correct; Section 5.4).

6.4.3 Constraints on dark energy, intrinsic alignment amplitude,
and model selection

We show the marginalized constraints on {w0, wa} in Fig. 10. The
constraints are weak for both data cuts, with results in agreement
with a cosmological constant. While the constraints favor the ‘large
w0, small wa’ corner (even more so for the KiDS-only constraints;
Joudaki et al. 2017b), the fiducial scenario shows an indication to
move out of the corner. Similar to the constant w cosmology, the
constraint on the IA amplitude is degraded, with a positive ampli-
tude favored at {2.6�, 2.3�} for {fiducial, conservative} data cuts.
From a model selection standpoint, the extended cosmology is not
favored relative to ⇤CDM, as �DIC is positive (at a level of 5.5
and 2.0 for the fiducial and conservative cases, respectively). In
Joudaki et al. (2017b), while KiDS alone did not favor the w0 �wa

cosmology (�DIC ' 1.0), the combination of KiDS and Planck
moderately favored the extended cosmology (�DIC = �6.8, re-
duced to �6.4 with a Riess et al. 2016 prior on H0). Here, we do
not combine {⇠±, �t, P0/2} with Planck given their relative discor-
dance (established by log I < 0).

6.5 Modified gravity

6.5.1 Background

For purposes of universality, we do not consider specific models
of modified gravity, but instead explore model-independent modi-

MNRAS 000, 000–000 (2017)

Cosmic shear vs CMB 3×2pt vs CMB

• Bring about concordance among probes. Ideally, but not necessarily, among 
all probes (both H0 & S8).


• Be favored in model selection sense (e.g. evidence, goodness of fit, DIC).


• Exhibit greater than 5σ deviation in additional parameters (wrt fiducial model).


• Stay robust when confronted with additional data.

SJ et al (2017, 2018a)



Two approaches to modified gravity
• “Model-independent” modified gravity 

 
— Gmatter - Glight modifying Ψ and Ψ + Φ 
— Index γG modifying linear growth rate 
— Horndeski αi encompassing a subset of stable scalar-tensor 
theories 
— EG encapsulating (g × κ) / (g × v) cross-correlations


• Model-specific modified gravity 
 
— Constrain a distinct model. Examples include: JBD, general 
f(R), DGP, DHOST, non-local gravity, bigravity



Model-independent vs 
model specific

• Why take “model-independent” approach?  
 
— Zeroth-order approach: search for any deviations from GR 
— Simultaneously constrain large classes of models


• Why take model-specific approach? 
 
— Simulate/model the nonlinear scales (screening mechanism is 
highly model-dependent) —> increase constraining power 
 
— Changes to both expansion and growth (expansion commonly 
fixed to ΛCDM in model-independent approaches)  
—> increase ability to resolve multiple tensions (i.e. both H0 & S8)



10-15% level constraints on Σ2 in fiducial and 
LS+Planck cases, Q2 bounded from above,  
S8 constraint improves by up to factor of 3.

“Model-independent” test of gravity
20 Joudaki et al.
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Figure 11. Left: Marginalized posterior contours in the �8 – ⌦m plane (inner 68% CL, outer 95% CL) in a universe with modified gravity. We show the
constraints from {⇠±, �t, P0/2} in brown, with ‘large scale’ cuts to the data in cyan (our most conservative case), and Planck CMB temperature in red.
For comparison, we also show dashed contours assuming fiducial ⇤CDM. Right: Marginalized posterior contours in the Q2 – ⌃2 plane (where the indices
represent a particular combination of bins, such that z < 1 and k > 0.05 h Mpc�1). In addition to the cases described, we include {⇠±, �t, P0/2} with
large-scale cuts jointly analyzed with Planck in blue. The dashed horizontal and vertical lines intersect at the GR prediction (Q = ⌃ = 1).

fications of the metric potentials, � and  , describing spatial and
temporal perturbations to the metric in the conformal Newtonian
gauge, respectively. While distinct modified gravity models affect
the metric potentials differently (e.g. Pogosian & Silvestri 2016),
the zeroth-order approach is to search for any deviations from GR.
Considering the first-order perturbed Einstein equations (e.g. Ma &
Bertschinger 1995), we modify the Poisson equation,

� k
2
� = 4⇡Ga

2
X

i

⇢i�iQ(k, a), (24)

where G is Newton’s gravitational constant, ⇢i is the density of
species i, with a fractional overdensity �i, and Q(k, a) provides
non-standard modifications of the Poisson equation in scale and
time, such that Q ⌘ 1 in GR (e.g. Jain & Zhang 2008; Bean
& Tangmatitham 2010; Dossett et al. 2015). We can therefore
consider the product of G and Q(k, a) to encapsulate an ‘effec-
tive gravitational constant’ that is both scale and time dependent:
Ge↵(k, a) = G ⇥ Q(k, a). As in the analysis of Joudaki et al.
(2017b), we moreover modify the sum of the metric potentials
probed by weak gravitational lensing with ⌃(k, a), such that

�k
2( + �) = 8⇡Ga

2
X

i

⇢i�i⌃(k, a)

+ 12⇡Ga
2
X

i

⇢i�i(1 + wi)Q(k, a),
(25)

where �i is the anisotropic shear stress, and wi is the equation of
state. We thereby allow for the two metric potentials to differ even
in the absence of anisotropic stress, whereas ⌃ ⌘ 1 in GR. The
two parameters {Q,⌃} take on specific functional forms in dis-
tinct modified gravity scenarios. In our analysis, we bin the two pa-
rameters in {k, z}, such that we constrain a total of eight modified
gravity parameters, as described in the forthcoming subsection.

To capture the modifications to General Relativity with our
combined lensing and RSD probes, we have integrated our updated
version of COSMOMC (described in Section 4) with the ISITGR
package (Dossett, Ishak & Moldenhauer 2011; Dossett & Ishak
2012). The combination of weak gravitational lensing and red-

shift space distortions is particularly complementary as the former
mainly probes the sum of the metric potentials  + � modifying
the relativistic deflection of light, while the latter probes the po-
tential  modifying the growth of large-scale structure. This com-
plementarity has for instance been encapsulated in the gravitational
slip statistic EG (Zhang et al. 2007, also see Leonard, Ferreira &
Heymans 2015), measured in e.g. Reyes et al. (2010); Blake et al.
(2016b); Pullen et al. (2016); Alam et al. (2017).

The complementarity between weak lensing and redshift-
space distortion measurements has also been used for CFHTLenS,
WiggleZ, and 6dFGS in Simpson et al. (2013), where no evidence
for deviations from GR were found. For model-independent con-
straints on deviations from General Relativity with other data com-
binations, see e.g. Daniel et al. (2010); Johnson et al. (2016); Ade
et al. (2016b); Di Valentino, Melchiorri & Silk (2016); Mueller
et al. (2016). For the ‘KiDS-only’ constraints, see Joudaki et al.
(2017b). In the current work, we move beyond previous analyses
in presenting self-consistent constraints on modified gravity from
overlapping lensing and spectroscopic surveys, including the full
covariance between the observables.

6.5.2 Parameterization

We bin {Q,⌃} in k and z, with divisions at k = 0.05 hMpc�1 and
z = 1 for consistency with the KiDS-only analysis in Joudaki et al.
(2017b). Our specific divisions allow for further complementarity
with the CMB, but we recommend the exploration of other choices.
We thereby consider four parameters in Q{1,2,3,4} and four param-
eters in ⌃{1,2,3,4}, such that ‘1’ refers to the {low z, low k} bin, ‘2’
refers to the {low z, high k} bin, ‘3’ refers to the {high z, low k}
bin, and ‘4’ refers to the {high z, high k} bin. In the MCMC runs,
we simultaneously vary these 8 modified gravity parameters along
with the 5 vanilla cosmological parameters and 14 astrophysical pa-
rameters (listed in Table 3), equaling a total of 27 free parameters
(additional parameters such as the optical depth are varied when
including the CMB).

In the modified gravity runs, we keep a ⇤CDM background
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Figure 12. Marginalized posterior distributions of the modified gravity parameters {Qi,⌃j} and their correlation for ⇠± with large-scale cuts to the data
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expansion. In computing the weak lensing observables, we further
modify the likelihood code to directly integrate over the sum of
the metric potentials instead of the matter power spectrum. While
the lensing observables are useful in constraining ⌃, also known as
Glight, the multipole power spectrum measurements are useful in
constraining 2⌃�Q, also known as Gmatter (e.g. Daniel & Linder
2013). While there is merit to the {Gmatter, Glight} parameteriza-
tion, we continue with the {Q,⌃} convention to be consistent with
the analysis in Joudaki et al. (2017b). Ultimately, given equivalent
priors, the cosmological inferences from a full variation of these
parameters are equivalent.

6.5.3 Avoiding nonlinearities: large-scale cuts

Instead of the standard approach of fiducial and conservative data
cuts, we consider fiducial and ‘large-scale’ cuts in Fig. 11 (but see
Tables 4 and 5 for conservative results). As shown in Table 2, the
large-scale cut removes nonlinear scales from the analysis, such
that it effectively corresponds to a linear cut. Concretely, we keep
only two angular bins in ⇠+ centred at ✓ = {24.9, 50.7} arcmin,
one angular bin in ⇠� centred at ✓ = 210 arcmin, two angular bins
in �t centred at ✓ = {50.7, 103} arcmin, and one physical bin in
{P0, P2} centred at k = 0.075 h Mpc�1. We consider this cut
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Model-specific approach: A case study of 
Jordan-Brans-Dicke (JBD) Gravity
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SBD = JBD action, R = Ricci scalar, Lm = matter Lagrangian 
φ = real scalar field, V = potential (taken to be constant) 
gμν = metric (with determinant g)  
MPl = (8πG)-1/2 = reduced Planck mass (G is bare grav. constant) 
ωBD = JBD coupling constant
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where)`a is the total matter stress-energy tensor and⇤ denotes
the d’Alembertian. The latter gives the scalar field’s equation
of motion,
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where) is the trace of the stress-energy tensor and+q = 3+/3q
(which vanishes in the case of the constant potential that we
consider).

We begin by considering the contribution from the homo-
geneous background (i.e. no perturbations). Eq. (4) gives the
two modified Friedmann equations,
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where d and % are the total energy density and pressure of all
components except the scalar field, respectively, the Hubble
parameter � ⌘ §0/0, and the # raised dots represent #th-order
time derivatives. We will consider a cosmology that incor-
porates the usual components of the stress-energy of the Uni-
verse (photons, baryons, neutrinos, dark matter) along with
the scalar field (which includes the constant potential + = ⇤).
In this more general case, the density parameter of each com-
ponent (X) includes q through
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X =

⌦X
q

=
dX
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, (7)

such that
Õ
⌦⇤

X = 1 in a flat Universe (in other words, when
defining the density parameter of each component using the
critical density in GR, they do not add to unity in a flat
Universe – we will further discuss the implication of the
choice between ⌦⇤

X and ⌦X on the concordance between
datasets in Sec. VIII B). Moreover, in a flat Universe, we
have ⇤ = 3�2

0 (1�⌦⇤
m,0), where the “0” subscripts refer to

the present time. Reading o� the first line in Eq. (6), the
energy density of the scalar field is
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Pl

✓
lBD

2

§q2

q
�3� §q++

◆
. (8)

The pressure of the scalar field is similarly read o� the second
line in Eq. (6), such that the e�ective equation of state of the
scalar field is given by

Fq ⌘ %q/dq =
§q2lBD +4� §qq+2 •qq�2+q

§q2lBD �6� §qq+2+q
. (9)

Hence, the scalar field (including a constant potential) is re-
sponsible for the accelerated expansion of the Universe, and
Fq ! �1 when q ! constant. The evolution of the scalar
field is given by Eq. (5), which can be expressed as
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Here, the left-hand side of the equation can further be ex-
pressed as 0�3 d

dC ( §q03). We immediately see that there are
two e�ects at play: the scalar field will a�ect the way that the
energy-momentum tensor of the rest of the Universe drives the
expansion rate by modifying the e�ective gravitational con-
stant (i.e. "2

Pl ! "2
Plq), and it will also itself be a source of

energy and pressure. As we shall further see below, GR is
recovered in the limit lBD ! 1; the corresponding density
parameter satisfies ⌦q =⌦⇤ +O(l�1

BD) and the e�ective equa-
tion of state satisfies Fq = �1+O(l�1

BD) which for large lBD
reduces to that of a cosmological constant in GR.

In Eq. (10), we find that the scalar field begins to evolve after
the end of the radiation-dominated era (i.e. q is constant and
0 /

p
C/q during radiation domination). During the matter-

dominated regime, where d / 0�3, the scalar field evolves as a
power law of the scale factor [34, 103, 104],

q = q00
1

1+lBD . (11)

Here, the subscript “0” refers to the present time, such that
q  q0 ⌘ q(0 = 1) as 0  1 (with non-negative lBD), and the
scale factor is given by

0(C) =
✓
C

C0

◆ 2+2lBD
4+3lBD

. (12)

In the limit lBD !1, one recovers q ! q0 (a constant) and
0 / C2/3, i.e. the standard GR result in the matter-dominated era.
The e�ect of the JBD coupling constant itself is to slow down
the expansion rate, i.e. the exponent in Eq. (12) is bounded
from above by the GR value (2/3). Moreover, C0 is related to
the Hubble constant through C0�0 = (2+2lBD)/(4+3lBD).

In a “restricted” JBD cosmology, we fix q0 to be given
by q(0 = 1) |restricted = 4+2lBD

3+2lBD
by requiring that the e�ective

gravitational constant is the same on local and cosmological
scales at present (e.g. [55]). We also consider an “unrestricted”
JBD cosmology, where we allow the data to determine q0 in-
dependently. Further in this section, we will show that this
corresponds to allowing for the e�ective gravitational con-
stant at present, (⌧matter/⌧) |0=1 / q�1

0 , to vary freely. At late
times, the constant potential in the JBD action gives rise to the
cosmic accelerating epoch, such that the e�ective equation of
state of the scalar field at present is given by Fq (0 = 1) ' �1
(to increasing precision as lBD increases; evolving towards
more negative values with decreasing scale factor [44]). In

this epoch, q / 0
4

1+2lBD [105, 106], such that the scalar field
increases marginally more rapidly with time than in the earlier
matter dominated regime (for instance, by . 0.3% at present
for lBD = 100 [44]).

B. Toy model: modifications to distances due to JBD gravity

In a matter-dominated Universe with zero curvature, given
the impact of JBD gravity on its expansion (Eq. 12), the angular
diameter distance is given by

⇡A (I) =
2+2lBD
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matter dominated regime (for instance, by . 0.3% at present
for lBD = 100 [44]).
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In a matter-dominated Universe with zero curvature, given
the impact of JBD gravity on its expansion (Eq. 12), the angular
diameter distance is given by

⇡A (I) =
2+2lBD

2+lBD

2��1
0

1+ I


1� (1+ I)�

2+lBD
2+2lBD

�
, (13)

Varying the action with respect to the metric and scalar field:

RD: φ = constant —> a ~ (t / φ)1/2 
MD: φ = φ0 a1/(1+ωBD) —>  a = (t / t0)(2+2ωBD)/(4+3ωBD) 

VD: φ ~ a4/(1+2ωBD) —> acceleration expansion driven by V

Scalar field has effect 
throughout full 

evolution of Universe
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Modified Poisson equation:

Effective gravitational constant:

Two types of JBD gravity 
 
restricted: vary ωBD, fix Gmatter/G|a=1 = 1 
unrestricted: vary both ωBD and Gmatter/G|a=1
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Why explore JBD gravity?
1. Testbed for cosmological analyses of modified gravity (and extended 

cosmologies more broadly), given its rich history and the role it plays in some of 
the fundamentally motivated extensions to SM of particle physics  
(particularly in string theory, extra-dimensional theories, and the decoupling limit 
of theories with higher spin fields).


2. Simplest modified gravity theory. Approximates a wider range of scalar-tensor 
theories (within Horndeski) on cosmological scales where gradients are 
suppressed.


3. One of remaining viable theories after LIGO-VIRGO measurement of the speed 
of gravitational waves (αΤ = 0).


4. Use model-specific approach to simultaneously constrain and explore 
degeneracies between modified gravity, neutrino mass, and baryonic feedback.


5. Explore whether the theory can help to alleviate cosmic tensions (H0 & S8) whilst 
being favored in model selection sense.



Earlier constraints on JBD gravity
• Shapiro time delay by Cassini: ωBD > 4.0 × 104 (95% CL)


• Pulsar-white dwarf binary: ωBD > 1.2 × 104 (95% CL)


• Cosmology (early & late): ωBD ≳ 102 - 103 (95% CL)  
Not competitive, but probing different redshifts and scales. 


• Big Bang Nucleosynthesis: 
{ωBD > 300, GBBN/G = 0.98 ± 0.06} (95% CL)

Avilez & Skordis (2014) 
Solà Peracaula et al. (2019 & 2020) 
Ballardini et al (2016 & 2020)

Bertotti et al (2003)

Freire et al (2012)

Clifton et al (2005) 
Alvey et al (2020)

Astrophysical constraints much more powerful. However, expect 
nonlinear corrections (screening) in generalized JBD gravity, which 

may completely shield astrophysical systems.



• Analytical and numerical description of the background expansion 
and linear perturbations.


• Nonlinear regime captured with hybrid suite of N-body simulations 
—> modified fitting function for matter power spectrum


• Cosmological constraints from existing probes of the expansion 
history, large-scale structure, and CMB. 
Simultaneous constraints on modified gravity, massive neutrinos, 
and baryonic feedback for the first time.

End-to-end approach

• Accurately account for observational systematics (e.g. baryonic 
feedback, intrinsic alignments, photo-z and shear calibration 
uncertainties, galaxy bias).


• Accurately account for theoretical systematics from modeling new 
physics such as neutrino mass, dark matter, DE/MG.


• Understand the role of degeneracies between different parameters 
(cosmological, astrophysical, gravitational, instrumental).



1-sided ωBD, 2-sided Gmatter/G

JBD impact on the expansion, growth, CMB

H
2
JBD/H

2
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SJ et al (2020)
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FIG. 3. CMB temperature power spectra in extended cosmological parameter spaces along with their respective responses, defined as
⇠extended (✓)/⇠⇤CDM (✓) �1. We consider deviations in the running of the spectral index, d=s/dln : , the e�ective number of neutrinos, #e� ,
the sum of neutrino masses,

Õ
<a , the primordial helium abundance, .P, and the present e�ective gravitational constant, ⌧matter/⌧. We also

highlight the ⇢-mode polarization power spectrum response for.P and ⌧matter/⌧ in the inlet (for further polarization details, see Appendix A).

baryonic feedback4 and massive neutrinos5).
Meanwhile, as lBD ! 0, the response of the CMB temper-

ature power spectrum, ⇠)) (✓), is oscillatory along the multi-
poles ✓ (due to shifts in the locations of the peaks), and is both
positive and negative below ✓ ⇠ 103, above which it gradually
increases relative to GR (further see Fig. 20 for the CMB po-
larization power spectrum and polarization-temperature cross-
spectrum). Here, we note the largely opposing e�ects of lBD
and the sum of neutrino masses,

Õ
<a , on the CMB power

spectra.
We further show the impact of changes in ⌧matter/⌧ (note

that as a primary parameter we always implicitly refer to its
value at present), where a ratio below unity decreases the
expansion rate, albeit at a constant level with redshift (given
Eq. 6 where �2

JBD/�2
GR ' 1/q), such that there is an overall

renormalization of the expansion history when ⌧matter/⌧ < 1.
Similarly, for the Weyl power spectrum,⌧matter/⌧ < 1 provides
a constant suppression on linear and mildly nonlinear scales

4 Baryonic feedback is incorporated in ������ [101] through calibration
to the OverWhelmingly Large (OWL) hydrodynamical simulations [113–
115], as further discussed in Sec. III and Sec. IV B. In Fig. 2, we consider
a feedback amplitude that corresponds to the “AGN” case of these simula-
tions.

5 We note that the Weyl power spectrum response for the sum of neutrino
masses (Fig. 2) is slightly positive for : ⇠ 10�2 ⌘ Mpc�1 because the fiducial
GR cosmology here has the sum of neutrino masses fixed to

Õ
<a = 0.06 eV,

which implies that the suppression in the Weyl power spectrum begins on
larger scales, even though the strength of the suppression is smaller on
increasingly nonlinear scales, relative to a cosmology with

Õ
<a = 1 eV. In

other words, the free streaming length of each neutrino species is inversely
proportional to its mass [116, 117] (which can in principle be used as a
distinct feature with which to probe the neutrino mass hierarchy [118]).

(down to : ⇠ 1⌘Mpc�1), where it is of the same magnitude as
for the expansion rate (given Eq. 23 where⌧ light/⌧ = 1/q in the
quasistatic regime). This suppression is enhanced on highly
nonlinear scales, where we have modified ������ to match
the numerical simulations in Sec. III. However, in contrast to
� (I) and %Weyl (:), the CMB temperature power spectrum is
enhanced as ⌧matter/⌧ < 1, such that the response increases
with ✓, making it a particularly suitable target for probes of the
CMB damping tail (and correlated with other physics such as
the running of the spectral index, neutrino mass, primordial
helium abundance, and the e�ective number of neutrinos that
a�ect the small-scale CMB).

As a result, there is a particular correlation between the ef-
fects of modified gravity, the sum of neutrino masses, and bary-
onic feedback on the Weyl power spectrum, along with distinct
correlations between the e�ects of modified gravity and the
sum of neutrino masses on the expansion rate and CMB power
spectrum. A notable di�erence between the three is that the
e�ective gravitational constant can in principle take on values
on both ends of the fiducial expectation, where ⌧matter/⌧ < 1
provides an enhancement of power (rather than suppression)
and thereby allows for even greater neutrino masses and bary-
onic feedback. The fact that the e�ective gravitational constant
allows for both suppression and enhancement of the cosmolog-
ical quantities (depending on whether ⌧matter/⌧ is greater or
smaller than unity) gives it greater flexibility than lBD which
only allows for “one-sided” modifications (i.e. either suppres-
sion or enhancement). This implies that ⌧matter/⌧ is better
suited to alleviating possible discordances between datasets,
but also to be correlated with the other aforementioned physics.

We note that the responses to lBD are smaller for the expan-
sion rate as compared to the Weyl and CMB power spectra.

H
2 / �

�1 / f(!BD)Gmatter/G
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CMB degeneracies

Partly break degeneracy between Neff and YP (and between Neff and Gmatter/G) via early ISW, potential 
high baryon fraction as Neff increases, phase shift in acoustic oscillations due to neutrino perturbations.



SJ et al (2020)

Nonlinear regime 10

fective gravitational constant on the polarization power spec-
trum, as pointed out in Ref. [123] and explicitly shown in
Sec. V and Appendix A), it exhibits a similar degeneracy
between .P and ⌧matter/⌧ (shown in Fig. 3). This level of
degeneracy also applies to the temperature-polarization cross-
spectrum as shown in Appendix A. We therefore note that the
uncertainty in the underlying gravitational theory (or the ex-
pansion rate more generally) has the potential to complicate in-
ferences of small-scale physics targeted by CMB surveys such
as AdvACT [129], SPT-3G [130], and the Simons Observa-
tory [131]. While the direct measurement of .P from observa-
tions of low-metallicity extragalactic H�� regions [132, 133] is
able to break its degeneracies with other parameters, the corre-
lation of ⌧matter/⌧ with parameters such as #e� and d=s/dln :
would still remain to be disentangled (and for the CMB would
be similar in nature to the correlations of a freely-varying .P
with #e� and d=s/dln : in GR).

In summary, the JBD scalar field will have an impact on a
multitude of cosmological observables that we will consider in
our analysis, such as the cosmic microwave background tem-
perature and polarization, along with lower-redshift probes of
the expansion history and the growth of structure, such as
supernova distances, the weak lensing of galaxies, the weak
lensing of the CMB, and the clustering of galaxies in redshift
space. In testing JBD gravity with the latest cosmological ob-
servations, we have implemented this theory in the Einstein-
Boltzmann solver EFTCAMB [134], and have performed an
extensive comparison with four distinct codes [112]. The
level of agreement between the codes is found to be at the
sub-percent level for both the matter power spectrum and
CMB temperature, polarization, and lensing power spectra,
well within the precision required for current observations.

III. THEORY: NONLINEAR REGIME AND #-BODY
IMPLEMENTATION

A. Background: numerical simulations with JBD gravity

In order to more fully utilize current cosmological data, we
proceed to model the density perturbations in the nonlinear
regime. We revisit the equations of motion, and now consider
the e�ect of the scalar field as that of a fifth force. Given
q = q̄ + Xq in the quasistatic regime (such that §Xq/rXq ⌧ 1
and :2/(0�)2 � 1), and considering a constant potential, the
scalar field equation of motion (Eq. 5) is well approximated by

1
02

r2Xq ' � 1

"2
Pl

✓
Xdm

3+2lBD

◆
. (27)

As Xdm = d̄mXm, this implies Xq/q̄ =  /(2+lBD). We note
that  . 10�4 in a cosmological simulation and given that we
are interested in the lBD � 1 regime, we can neglect terms
of order (rq)2/q̄2 in the Einstein equations. In other words,
the standard contribution of the energy density of the scalar
field is insignificant as compared to the clustering component
of the overall energy density.

FIG. 4. Matter power spectrum %(: , I = 0) for lBD = 100. Here,
“1 sim” refers to a single realization of the initial conditions for
which we run a high-resolution RAMSES simulation (dotted line) in
addition to the COLA simulations (dashed line). As a result, the dip
at : ⇠ 0.05 ⌘ Mpc�1 is due to cosmic variance (for both RAMSES
and COLA given the same initial conditions). Here, RAMSES+COLA
incorporates all of the simulations (some with has a larger box size
and thereby a smaller minimum :) and the error bars denote the
68% confidence level. For comparison, we also show the linear
theory prediction (dot-dashed line) which expectedly agrees with the
simulations on large scales but visibly deviates for : & 10�1 ⌘ Mpc�1.

As a result, in the N-body simulations we evolve the non-
relativistic geodesic equation (e.g. [135]),

•x+2� §x = � 1
02

r , (28)

where x is the position of each particle and the raised dots
are, as before, derivatives with physical time. The geodesic
equation is evolved along with the modified Poisson equation,
re-expressed here in the form

r2 =
3
2
⌦m,0�

2
00

�1⌧matter

⌧
Xm, (29)

where we emphasize that the e�ective gravitational constant,
⌧matter, is time-dependent (Eq. 17). The initial conditions
for the particles were generated with the MG-PICOLA code
[99, 136] using second-order Lagrangian perturbation theory
(2LPT) given a power-spectrum %(: , I = 0) from EFTCAMB
[134]. The first and second order growth factors of the density
contrast in 2LPT, denoted ⇡1 and ⇡2, are determined by the
equations [99]

•⇡1 +2� §⇡1 =
3
2
⌦m,0

03

⌧matter

⌧
�2

0⇡1,

•⇡2 +2� §⇡2 =
3
2
⌦m,0

03

⌧matter

⌧
�2

0

⇣
⇡2 �⇡2

1

⌘
, (30)

which are of the same form as in ⇤CDM [137] aside from the
⌧matter/⌧ factor.
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FIG. 5. The ratio of matter power spectra between the #-body simulations and ������, %#�body (:)/%������ (:), for lBD = 50 (left) and
lBD = 1000 (right) illustrating the accuracy of our modifications to ������. The shaded bands encapsulate the 68% confidence intervals given
the variations within the simulations (for each of the considered redshifts, I = 0 in grey, I = 0.5 in light blue, and I = 1.0 in light violet), the thin
colored lines inside the bands correspond to the ratio with ������ given the mean of the simulations, and the dotted (black) horizontal lines
mark ±5% deviations from unity. The agreement between ������ and the simulations improves towards lower redshift by our construction.

B. Hybrid suite of #-body simulations: COLA and RAMSES

We have modified two N-body codes to obtain an accu-
rate measurement of %(:) beyond the linear regime.7 For
: < 0.5 ⌘ Mpc�1, we use a modified version of the COmov-
ing Lagrangian Acceleration (COLA) code [98, 99], which
solves for perturbations around paths predicted from 2LPT,
and has been shown to be accurate and fast on large scales.
This enables the generation of a large enough ensemble of
realizations to substantially reduce sample variance on large
scales: we generate 50 realizations with # = 10243 particles
in a box of size ! = 1000 ⌘�1 Mpc (to cover large scales)
and 100 realizations with # = 5123 particles in a box of size
! = 250 ⌘�1 Mpc (to cover small scales). We also use a large
number of steps to increase the accuracy on smaller scales
(⇠ 100 steps, an order of magnitude more than typical COLA
simulations). On very small scales, to probe wavenumbers out
to : = 10 ⌘ Mpc�1, we use the RAMSES grid-based hydrody-
namical solver with adaptive mesh refinement [100], modified
to include JBD gravity. For each lBD, we have generated a
higher resolution RAMSES simulation with # = 5123 particles
in a box of size ! = 250 ⌘ �1 Mpc.

The RAMSES simulation is run with the same seed as one
of the COLA simulations, chosen by the requirement that it
has a %(: , I) as close as possible to the mean of the ensemble
of COLA simulations, which ensures that it is not an outlier
realization. The COLA simulations are found to agree to 1%
with the RAMSES simulation for : < 0.5 ⌘ Mpc�1 at I = 0, and
with an improved accuracy towards higher redshifts. For the
largest wavenumbers considered here (:max = 10 ⌘ Mpc�1),
with our simulation setup, the RAMSES simulation is accu-

7 A patch with the modifications to RAMSES can be found in https:
//github.com/HAWinther/RamsesPatchApproxMGSolver and the
COLA code used can be found in https://github.com/HAWinther/
MG-PICOLA-PUBLIC.

rate to ⇠ 5–10%.8 The ratio of the RAMSES and the COLA
%(: , I) for the same seed are then used to correct the COLA
simulations %(: , I) out to its maximum wavenumber. These
simulations are carried out forlBD = {50,100,500,1000}, and
we use outputs at I = {0,0.5,1.0} as the basis for producing
our modifications to the nonlinear matter power spectrum (see
Fig. 4).

C. JBD gravity modifications to ������

We include these modifications to the matter power spec-
trum in ������ [101, 102] (also see Refs. [139, 140]), which is
a fitting function for the nonlinear matter power spectrum based
on the halo model (reviewed in e.g. [141]). For the dark matter
power spectrum, ������ has been calibrated to the Coyote #-
body simulations [142] and is accurate at the level of 5–10%
for I  2 and :  10 ⌘ Mpc�1 (improving towards lower neu-
trino mass, where massive neutrinos suppress the clustering of
matter below the neutrino free-streaming scale). A benefit of
������ over other fitting functions such as H������ [143, 144]
is that it has also been calibrated to the OverWhelmingly Large
(OWL) hydrodynamical simulations [113–115]. As a result,
it is able to capture the impact of baryonic feedback in the
nonlinear %(: , I) (at ' 5% level precision for the same red-
shifts and scales) and to marginalize over the uncertainty in
the modeling. ������ moreover improves its modeling of
the impact of massive neutrinos in the nonlinear %(: , I) by
calibrating to the massive neutrino simulations of Massara et
al. (2014) [145] (agreement achieved at the few percent level
for <a  0.6 eV, I  1, :  10 ⌘ Mpc�1 [102]).

To account for JBD gravity within the ������ framework,
in addition to modifying the expansion rate, density parame-

8 For a study of the accuracy of RAMSES compared to other N-body codes,
see e.g. Schneider et al. (2016) [138].

1) Modify geodesic and poisson 
equations. Generate initial 
conditions using 2LPT.  
 
2) Run a hybrid suite of Ramses 
and COLA simulations. 

3) Modify HMCODE to match 
simulations (MG, neutrino mass, 
baryonic feedback).
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Planck + ACT: ωBD > 1380 (95% CL)

Small impact on H0 tension 
(more substantial for ACT). 

Negligible impact on S8 tension.

SJ et al (2020)
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In all slides: all other cosmological and systematics parameters 
simultaneously varied. (systematics include e.g. intrinsic 

alignments, photo-z uncertainties, galaxy bias, velocity dispersion)

ωBD ≳ 100 (95% CL) 
Fix mν: 
Vary mν:

Gmatter/G = 1.07+0.12
�0.15
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Unrestricted JBD: 
T(S8) = 1.6 (down by nearly 1σ) 

ΔDIC = -1
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S8 and H0 tensions alleviated, 
less so when CMB polarization 
data is included. 
 
T(S8) < 1σ (wrt KiDS × 2dFLenS) 
T(H0) ~ 3σ with polarization 
T(H0) ~ 2σ without polarization



Assessing concordance as a 
requirement for combining datasets
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log I = [2 ln(10)]�1[QDMAP + 4 lnS]
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Use the log I statistic to assess 
concordance.  
S = suspiciousness metric 
QDMAP = goodness of fit metric 
 
Unrestricted JBD:  
Δlog I  = 0.93 (fix mν) 
Δlog I  = 0.37 (vary mν) 
Swapping order changes  
by Δlog I  by ~1.



26

0.
80

0.
84

S8

0.95

1

1.05

G
m

at
te

r/
G

1.6

2.4

3.2

B

0.08

0.16

�
m

�
[e

V
]

65

67.5

70

H
0

�
10 �

8
�

6

ln ��1
BD

0.78

0.81

0.84

0.87

S
8

0.
96

1.
04

Gmatter/G

1.
5

3.
0

B
0.
00

0.
06

0.
12

0.
18

�m� [eV]

66 69 72

H0

KiDS�2dFLenS + All-BOSS + All-Planck18 + Pantheon
KiDS�2dFLenS + All-BOSS + All-Planck18 + Pantheon (excl.

�
m� )

All-BOSS + All-Planck18 + Pantheon

All-BOSS + All-Planck18 + Pantheon (�CDM)

FIG. 12. Marginalized posterior distributions (inner 68% CL, outer 95% CL) of the JBD parameter, lnl�1
BD, the present e�ective gravitational

constant,⌧matter/⌧, the baryonic feedback amplitude, ⌫, the sum of neutrino masses,
Õ
<a , the Hubble constant, �0 (in units of kms�1Mpc�1),

and (8 =f8
p
⌦m/0.3 from di�erent combinations of the KiDS, 2dFLenS, BOSS, Pantheon, and Planck datasets. All other standard cosmological

and systematics parameters are simultaneously varied. For visual clarity, we have zoomed in on the lnl�1
BD axis where the distributions flatten

towards the GR limit at �1 (in practice towards the negative end of the prior range at lnl�1
BD = �17).

parameters becomes negligible. Instead, there is a strong
correlation of �0 and (8 with the present e�ective gravita-
tional constant (given its impact on the metric potentials along
with the expansion and growth histories; see Figs. 1 and 2).
Here, there is a factor of 3.1 and 1.5 increase in the uncertain-
ties on �0 and (8 relative to ⇤CDM, respectively, such that
�0 = 67.80+1.28

�1.32 kms�1Mpc�1 and (8 = 0.835+0.015
�0.016. While

the posterior means shift marginally relative to ⇤CDM (by

��0 = �0.35 kms�1Mpc�1 and �(8 = �0.005), given the in-
crease in the uncertainties, the concordances with the Riess
et al. (2019) [77] and KiDS⇥2dFLenS datasets improve to
3.2f (from 4.0f in ⇤CDM) and 0.7f (from 2.3f in ⇤CDM),
respectively. In the unrestricted JBD model with massive neu-
trinos, the additional degree of freedom in

Õ
<a has only a

marginal impact on �0 and (8 (the strongest impact is on (8
which shifts downwards by 0.5f compared to the unrestricted

Fix mν:  
ωBD > 1540 (95% CL) 

Gmatter/G = 0.996 +/- 0.029  
T(H0) = 3.0 
ΔDIC = 2.0 

 
Vary mν:  

ωBD > 2230 (95% CL) 
Gmatter/G = 0.997 +/- 0.029  

T(H0) = 3.1 
Σmν < 0.12 eV (95% CL) 

ΔDIC = 4.6

Full constraints on JBD gravity

SJ et al (2020)

Translating above to BBN: 
GBBN/G = 0.99 +/- 0.03



JBD parameterization
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Summary
• End-to-end exploration of a distinct modified gravity theory (analytic 

description, numerical simulations, cosmological constraints from 
existing probes). 

• Simultaneous constraints on modified gravity, massive neutrinos, 
and baryonic feedback for the first time. Neutrino mass bound can 
degrade by up to factor of 3 in JBD gravity. 

• Cosmic tensions partly alleviated (S8 fully, H0 down to 3σ), due to 
increased uncertainty rather than deviations in new parameters. 
Extended model not found favored in model selection sense. 

• A positive shift in the effective gravitational constant suppresses the 
CMB damping tail, which might complicate future inferences of 
small-scale physics. 

• Expect order of magnitude improvements in JBD constraints with 
Stage-IV surveys. Will allow for comparable constraints from 
cosmology and astrophysics.



Extra slides



Constraints on JBD gravity
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S8 and H0 tensions
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FIG. 17. Marginalized posterior distributions for (8 = f8
p
⌦m/0.3 (left) and the Hubble constant, �0 (right), given in units of kms�1Mpc�1.

We simultaneously vary all standard cosmological and systematics parameters in an unrestricted JBD model with massive neutrinos (along with
⇤CDM for comparison). The grey vertical bars show the 68% CL (inner) and 95% CL (outer) constraints on �0 from Riess et al. (2019) [77].

f (⌧matter/⌧) ' 0.053 level from Planck 2013 (temperature
and lensing), ACT, and SPT, which we improve on by nearly a
factor of two in our full analysis.

3. Consistency with Big Bang Nucleosynthesis

As we constrain the coupling constant, lBD, to be larger
than ⇠ 1⇥ 103 from the Planck CMB temperature and polar-
ization alone and ⇠ 2⇥ 103 when Planck is combined with
other probes, the scalar field and thereby the e�ective grav-
itational constant, ⌧matter/⌧, is approximately constant with
time, to within 0.5–1% from the present to the BBN epoch. As
our ⌧matter/⌧ constraint is e�ectively centered at unity (see
Sec. VIII B 1), this implies that we approximately constrain the
gravitational constant during BBN to ⌧BBN/⌧ = 0.99±0.03.

This mild evolution of the gravitational constant and con-
sistency with the standard model expectation is in agreement
with the nucleosynthesis inference in Ref. [83], where the pri-
mordial helium and deuterium bounds are used to constrain
⌧BBN/⌧ = 0.98±0.03 (i.e. similar precision, and evolution of
the gravitational constant by 0.02 to reach the standard model
expectation at present). Put di�erently, this implies that our
JBD constraints respect the primordial abundances of light
elements.

4. Neutrino mass, baryonic feedback, and intrinsic alignments

As summarized in Fig. 16, our strongest bound on the sum
of neutrino masses is

Õ
<a < 0.11 eV (95% CL) from Planck,

BOSS, and Pantheon, which is not particularly a�ected by the
assumptions of the JBD modeling or by the inclusion of the
KiDS⇥2dFLenS dataset (at the 0.01 eV level). The baryon
feedback amplitude is most strongly bounded in the unre-
stricted JBD model where all datasets are considered, such
that ⌫ < 2.8 at 95% CL (as compared to the “no-feedback”
scenario of ⌫ = 3.13). This bound is only weakly sensitive
to the cosmological model and specific datasets considered in
addition to KiDS (such that it weakens by at most �⌫ ' 0.6 as
we consider an exclusion of Planck and fixed neutrino masses).

In Fig. 16, we also show that the IA amplitude is marginally
larger in the JBD model relative to⇤CDM (by��IA ⇡ 0.2) and
we improve the constraint on the amplitude by more than 20%
as Planck is considered alongside KiDS in the unrestricted
JBD model. However, we emphasize that the large amplitude
(positive by up to 4f) might be partly explained by the sys-
tematic uncertainties in the photometric redshift distributions
(as noted in Sec. VIII A).
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