

SCHOOL OF ADVANCED STUDIES Scuola Universitaria Superiore

The HERD space mission

Dr. Felicia Barbato – On behalf of HERD collaboration GSSI and INFN

Measuring the all particle spectrum at knee

Still open question about cosmic rays...

where are they produced?

how are they accelerated to such high energies?

> how do they propagate in the Galaxy and the Universe?

Necessity to study the sub-PeV region to understand the (dominant) origin of the knee

Is it due to the maximum energy achievable at the source or to diffusion processes in the Galaxy?

G

INFN

S

Measuring the all particle spectrum at knee

Current data suggest a hardening of the spectra above about 0.2 TeV/nucleon

- $\gamma_{(E>0.2TeV/nucleon)} \simeq -2.6$ for all considered elements
- $\gamma_{(E>0.2TeV/nucleon)} \simeq -2.7$ for protons

The hardening @ \approx 200-400 GeV is well established since first observation by Pamela -> Implication on the acceleration mechanism

The softening @ \approx 10 TeV is observed by different experiment with the 1st strong evidence in DAMPE data

S

G

INFN

Scientific objectives

precise measurements of the energy spectra of CR individual species up to few PeV

study electrons and photon of spectra from GeV up to tens of TeV

0.75 1.40 2.70 5.00 Flux(>100 MeV) (cm⁻² s⁻¹) ×10⁻⁸ indirect dark matter search

contributing to multi-messenger observations together with other satellites and ground-based experiments

The HERD collaboration

CHINA

Institute of High Energy Physics, CAS (IHEP) Xi'an Institute of Optical and Precision Mechanics, CAS (XIOPM) Guangxi University (GXU) Shandong University (SDU) Southwest Jiaotong University (SWJTU) Purple Mountain Observatory, CAS (PMO) University of Science and Technology of China (USTC)

Yunnan Observatories (YNAO) North Night Vision Technology (NVT) University of Hong Kong (HKU) Academia Sinica

SPAIN

CIEMAT - Madrid ICCUB – Barcelona IFAE – Barcelona

ITALY

L'Aquila University **INFN Bari and Bari University INFN Bologna INFN Firenze and Firenze University** INFN Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute (GSSI) **INFN Lecce and Salento University** INFN Napoli and Napoli University **INFN Pavia and Pavia University INFN Perugia and Perugia University INFN Pisa and Pisa University** INFN Roma2 **INFN** Trieste **SWITZERLAND** University of Geneva EPFL - Lausanne

The **High Energy cosmic-Radiation Detection** (HERD) facility is an international space mission that will start operation around 2027 to make cosmic ray direct measurements at the highest possible energies with current technologies

Mission Profile

CSS expected to be completed in 2022

Life time	> 10y	
Orbit	Circular LEO	
Altitude	340-450 km	
Inclination	42°	

HERD expected to be installed around 2027

Life time	> 10y	
FOV	+/- 70°	
Power	< 1.5 kW	
Mass	< 4 †	

The payload

SCD	Charge Reconstruction		
PSD	Charge Reconstruction y Identification		
FIT	Trajectory Reconstruction Charge Identification		
CALO	Energy Reconstruction e/p Discrimination		
TRD	Calibration of CALO response for TeV protons		

Main requirements						
	γ		p, nuclei			
Energy Range	>100MeV	10 GeV 100 TeV	30 GeV 3 PeV			
Energy resolution	1% @ 200 GeV	1% @ 200 GeV	20% @ 100 GeV -1 PeV			
Effective Geometric Factor	>0.2 m²sr @ 200 GeV	>2 m ² sr @ 200 GeV	>1 m ² sr @ 100 TeV			

Silicon Charge Detector (SCD)

SCD is made by silicon micro-strip detectors that will measure with precision the impinging particle charge |Z|

SCD

- It is the outermost detector to avoid early charge-change interactions in the PSD
- It is highly segmented to minimize the backscattered secondary particles coming from the CALO

Charge Reconstruction

Plastic Scintillator Detector (PSD)

Charge Reconstruction and y Identification

F. Barbato

Requirements:

- high efficiency in charged particles detection (>99,98%)
- high dynamic range to identify nuclei at least up to iron
- segmented to reduce the Back-scattering particles from the calo

PSD

Fiber Tracker (FIT)

- 4 identical side sectors + 1 top sector
- 7 x-y planes in each side sector
- 5 x-y planes in the top sector

FIT

- 6 x modules (106 cm fiber length) in each x plane •
- 10 y modules (77 cm fiber length) in each y plane
- 1 fiber mat + 3 silicon photomultiplier (SiPM) arrays

Calorimeter (CALO)

CALO

Energy Reconstruction and e/p Discrimination

- 7500 LYSO cubes with edge length of 3 cm
- It accepts particles coming from each surface

Particle	Energy	Effective acceptance	Energy resolution
Protons	≤1PeV	> 1 m ² sr	~ 30%
Electrons	≤ 10 TeV	~ 2 m ² sr	~ 2%

First readout system

- WaveLength Shifting fibers (WLS)
 - Image Intensified scientific CMOS
 - Frame rate: > 800 frames/sec
 - Low read-out noise (< 1.5e)

Second readout system

High range IsCMOS

rigger PMT 1& Calibration or low range IsCMOS

Frigger PMT 2& Calibration

- Photo-diodes with different active areas connected to HIDRA chips
- The S/N ratio for MIP is >= 4
- Expected saturation level ~ 250 TeV

The double read-out scheme will strongly improve both the calibration and trigger capabilities

Transition Radiator Detector (TRD)

Calibration of CALO response for TeV protons

The TRD, installed on a lateral face of the detector, is needed to calibrate the response of the calorimeter to high energy hadronic showers

TRD

Calibration procedure

- Calibrate TRD response using [0.5 GeV, 5 GeV] electrons in space (and beam test)
- Calibrate CALO response using [1 TeV, 10 TeV] protons from TRD F. Barbato
 MG-16 - Online

G

S

HERD potential

5 years of HERD exposure

The HERD data can clearly reveal the knees of both protons and Helium nuclei and can critically address the Zdependence, A-dependence, or constant knee of different compositions, which are very important to understand the physical nature of the knee of CRs

- B/C is important to probe the propagation of CRs. The HERD measurements will extend the precise B/C ratio to a few TeV/nucleon, and thus can precisely determine the propagation behaviour of CRs
- . The Iron nuclei are the end products of stellar nucleosynthesis. The heavy nuclei in CRs are thus very good tracer of the acceleration sites of CRs. HERD is expected to strongly improve such measurements.

Electrons and positrons

Expected e⁺+e⁻ flux in 1 year with PWN or DM sources

HERD will measure the all electron flux up to several tens of TeV in order to detect: spectral cutoff at high energy local SNR sources of very high energy e⁻ ... and additional information from anisotropy measurement!

"The different behavior of the cosmic-ray electrons and positrons measured by AMS is clear evidence that most high energy electrons originate from different sources than high energy positrons" PRL 122 041102 (2019)

Gamma ray observatory

Thanks to its large acceptance and sensitivity, **HERD** will be able to perform a full gamma-ray sky survey in the energy range >100MeV

- extend Fermi-LAT catalog to higher energy (>300GeV)
- increase the chances to detect rare γ events

Targets of Gamma-Ray Sky Survey:

- search for dark matter signatures
- study of galactic and extragalactic γ sources
- study of galactic and extragalactic γ diffuse emission
- detection of high energy GRBs

10³

Energy (MeV)

10-

10²

······ 10 Years

104

The High Energy cosmic-Radiation Detection (HERD) space mission is now being designed, as a result of an international collaboration among several chinese and european institutions, to make cosmic ray (CR) direct measurements at the highest possible energies with current technologies.

HERD primary scientific goals include

- extend the measurement of p and He flux up to a few PeV testing the theory of the knee structure as due to acceleration limit
- extend the measurement of e⁺+e⁻ flux up to several tens of TeV testing the hypothesis of the expected cutoff at high energy distinguishing between DM or astrophysical origin of positron excess
- Iarge acceptance, high sensitivity to γ up to several hundreds of GeV searching for γ line associated to DM annihilation accomplishing a γ sky survey up to very high energy

Scuola Universitaria Superiore

GSSI and INFN

CALO PERFORMANCES

