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Summary!

For the Friedmann-Lematre-Robertson-Walker metric, there exist three singular
solutions in the Einstein-Aether theory which are not singular in the General Relativity,
all of them for k = −1 with Λ > 0, Λ = 0 and Λ < 0. This result is cross-verified by
showing the focusing of timelike geodesics using the Raychaudhuri equation.

For the most general spherically symmetric static metric, there exist analytical
solutions for c14 = 16/9, 48/25 and −16 which have no horizons, neither Killing
horizon nor universal horizon, thus we have naked singularities. But the corresponding
cases in General Relativity do have horizons.
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The Vector-Tensor theories of gravity contain a dynamical, timelike, four-vector field
besides the metric. In some models, the four-vector is unconstrained, while in others it
is constrained to have unit norm.

Constrained Theories
Einstein-Aether theory [2001]
Khronometric theory [2010] ← Hǒrava-Lifshitz Gravity [2009]
Kostelecky-Samuel theory [1989] → Bumblebee Gravity [2004]

Unconstrained Theories
General vector-tensor theory [1981]
Hellings-Nordtvedt theory [1973]
Will-Nordtvedt theory [1972]
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Einstein-aether theory is a generally covariant model in which local Lorentz invariance
is broken by a dynamical unit timelike vector field dubbed the aether.

Einstein-aether theory has the most general diffeomorphism-invariant action involving a
spacetime metric and a vector field with the field equations being the second-order
differential equations in terms of not only the metric but also the aether field.
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The general action of the EA theory is given by,

S =

∫ √
−g (LEinstein + Laether + Lmatter)d

4x , (1)

where,

LEinstein =
1

16πG
(R − 2Λ) , (2)

Laether =
1

16πG
[−K ab

mn∇au
m∇bu

n + λ(gabu
aub + 1)], (3)

with
K ab

mn = c1g
abgmn + c2δ

a
mδ

b
n + c3δ

a
nδ

b
m − c4u

aubgmn, (4)

and the ci being dimensionless coupling constants, and λ a Lagrange multiplier
enforcing the unit timelike constraint on the aether. The last term, Lmatter is the
matter Lagrangian.
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In the weak-field, slow-motion limit EA theory reduces to Newtonian gravity with a
value of Newton’s constant GN related to the parameter G in the action,

G = GN

(
1− c1 + c4

2

)
. (5)

The coupling constant G of EA theory is equal to the usual Newtonian gravitational
constant GN for c1 = −c4 and not necessarily c1 = c4 = 0.

The Newtonian limit is recovered only for c1 + c4 < 2.

If c1 + c4 > 2 gravity is repulsive, while for c1 + c4 = 2 the coupling constant G is
zero, which means that the action blows up.
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The most general isotropic and homogeneous universe is described by a FLRW metric,

ds2 = −dt2 + B(t)2

[
dr2

1− kr2
+ r2dθ2 + r2 sin2 θdφ2

]
, (6)

where, B(t) is the scale factor and k is a Gaussian curvature the space at a given time.
According to observations by WMAP and Planck experiments, this metric is a good
description of our universe as it is spatially homogeneous and isotropic when averaged
over large scales. This leaves us with a choice of

ua = (1, 0, 0, 0). (7)
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The standard definitions of the Hubble parameter H(t), the deceleration parameter
q(t) and the redshift are given by, respectively,

H(t) =
˙B(t)

B(t)
, (8)

q(t) = −
¨B(t)B(t)

˙B(t)
2

, (9)

where the symbol dot denotes the differentiation with respect to the time coordinate.
The Friedmann-Lemâıtre equations are given by,(

1 +
β

2

)( ˙B(t)

B(t)

)2

=
Λ

3
− k

B(t)2
, (10)

(
1 +

β

2

) ¨B(t)

B(t)
=

Λ

3
. (11)
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A singularity always implies focusing of geodesics, although focusing alone cannot
imply a singularity as pointed out by Landau. Having already established the presence
of singularities, we now use the focusing of timelike geodesics to reinforce our results.

dθ

dτ
= −θ

2

3
− σµνσµν + wµνw

µν − Rµνk
µkν , (12)

where θ, σµν ,wµν are respectively the expansion, shear and twist of the congruence of
geodesics, and τ is the proper time along a geodesic with a tangent vector field,
kµ = dxµ/dτ . The Raychaudhuri equation has geometrical meaning and has no
connection a priori to the gravitational theory which only enters through the term
−Rµνξ

µξν .
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For the FLRW metric, (τ = t), assuming the vector kµ = δµt as the four-velocity, both
shear σµν and twist wµν are zero, while the expansion and curvature terms for timelike
geodesics are given by,

θ =
3

2

Ḃ(t)

B(t)
, (13)

−Rµνk
µkν = −Rtt , (14)

where Rtt is the component tt of the Ricci tensor. Thus, the expansion rate of
congruence of timelike geodesics is given by

dθ

dt
= −3

4

[
Ḃ(t)

B(t)

]2

+ 3
B̈(t)

B(t)
= −3H2

(
q +

1

4

)
. (15)
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Λ > 0, k = −1

The Friedmann-Lemâıtre equations yield the following two solutions for Λ > 0, k = −1.

B1(t) =
1

2
√

Λ

−3 e

√
2Λ

3(β+2)
(t0−t)

ε
√

Λ + 3 +
√

Λ
+
ε
√

Λ + 3 +
√

Λ

e

√
2Λ

3(β+2)
(t0−t)

 , (16)

B2(t) =
1

2
√

Λ

−3 e

√
2Λ

3(β+2)
(t−t0)

ε
√

Λ + 3 +
√

Λ
+
ε
√

Λ + 3 +
√

Λ

e

√
2Λ

3(β+2)
(t−t0)

 . (17)

The solution only exists for β + 2 > 0.
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The Kretschmann scalar for the metric is singular at

tsing (B1) = t0 −
√

3(β + 2)

8Λ
ln

[
2

3
Λ +

2

3
ε
√

Λ(Λ + 3) + 1

]
, (18)

tsing (B2) = t0 +

√
3(β + 2)

8Λ
ln

[
2

3
Λ +

2

3
ε
√

Λ(Λ + 3) + 1

]
. (19)

The metric is not singular for β = 0 since in this time the curvature invariant being 8Λ2

3 .
But, the metric is singular for β + 2 > 0 with β 6= 0. This means it is a new singularity.
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The Raychaudhuri equation is given by

dθ

dτ
(B1) =

3Λ

2(β + 2)

1[
−3(β + 2) + e

2
3

√
6Λ
β+2

(−t+C1)
]2
×

[
e

4
3

√
6Λ
β+2

(−t+C1) − 10(β + 2)e
2
3

√
6Λ
β+2

(−t+C1)
+ 9(β + 2)2

]
, (20)

dθ

dτ
(B2) =

3Λ

2(β + 2)

1[
−(3β + 2) + e

− 2
3

√
6Λ
β+2

(−t+C2)
]2
×

[
e
− 4

3

√
6Λ
β+2

(−t+C2) − 10(β + 2)e
− 2

3

√
6Λ
β+2

(−t+C2)
+ 9(β + 2)2

]
. (21)

The expansion rate is negative only for a certain interval of time, assuring the
convergence of the congruences of timelike geodesics.
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Λ = 0, k = −1

The Friedmann-Lemâıtre equations yield the following two solutions for Λ = 0, k = −1,

B1(t) = 1 +

√
2

2 + β
(t0 − t) (22)

B2(t) = 1 +

√
2

2 + β
(t − t0) (23)

The solution only exists for β + 2 > 0.
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The Kretschmann scalar for the metric is singular at

tsing (B1) = t0 +

√
2 + β

2
, (24)

tsing (B2) = t0 −
√

2 + β

2
. (25)

For β = 0 which corresponds to GR, the solution exists and is never singular with the
curvature invariant being null. But, the metric is singular for β + 2 > 0 such that
β 6= 0. This means it is a new singularity.
The Raychaudhuri equation is given by

dθ

dτ
(B1) = − 3[

−2t + C1
√

2(β + 2)
]2
, (26)

dθ

dτ
(B2) = − 3[

−2t + C2
√

2(β + 2)
]2
. (27)

The negative expansion rate is assuring the convergence of the congruences of timelike
geodesics.
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Λ < 0, k = −1

The Friedmann-Lemâıtre equations yield the following two solutions for Λ < 0, k = −1,

B1(t) =

√
3

|Λ|
sin

(√
2|Λ|

3(β + 2)
(t − t0) + sin−1

√
|Λ|
3

)
(28)

B2(t) =

√
3

|Λ|
sin

(√
2|Λ|

3(β + 2)
(t0 − t) + sin−1

√
|Λ|
3

)
(29)

The solution only exists for β + 2 > 0.
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The Kretschmann scalar for the metric is singular at

tsing (B1) = t0 −

√
3(β + 2)

2|Λ|
sin−1

√
|Λ|
3

(30)

tsing (B2) = t0 +

√
3(β + 2)

2|Λ|
sin−1

√
|Λ|
3

(31)

For β = 0 the solution exists and is never singular with the curvature invariant being
8|Λ|2

3 . But, the metric is singular for β + 2 > 0 with β 6= 0. This means it is a new
singularity.
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The Raychaudhuri equation is given by

dθ

dτ
(B1) = − |Λ|

2(β + 2)

3 cos2
[√

2|Λ|
3(β+2) (−t + C1)

]
− 4

cos2
[√

2|Λ|
3(β+2) (−t + C1)

]
− 1

, (32)

dθ

dτ
(B2) = − |Λ|

2(β + 2)

3 cos2
[√

2|Λ|
3(β+2) (−t + C2)

]
− 4

cos2
[√

2|Λ|
3(β+2) (−t + C2)

]
− 1

. (33)

The negative expansion rate is assuring the convergence of the congruences of timelike
geodesics.
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We start with the most general spherically symmetric static metric

ds2 = −e2A(r)dt2 + e2B(r)dr2 + r2dθ2 + r2 sin2 θdφ2. (34)

The aether field is assumed to be unitary and timelike, chosen as

ua = (e−A(r), 0, 0, 0). (35)

This choice is not the most general and is restricted to the scenario where aether is
static. The aether must tip in a black hole solution as it cannot be timelike be aligned
with the null Killing vector on the horizon. As that is not the case with our choice, our
solutions are valid only outside the Killing horizon. This is good enough for solar
system tests and even for astrophysical solutions to describe the exterior spacetime to
a source.



Naked Singularities

The timelike Killing vector of the metric is giving by

χa = (−1, 0, 0, 0). (36)

The Killing and the universal horizon are obtained finding the largest root of

χaχa = 0, (37)

and
χaua = 0, (38)

respectively, where χa is the timelike Killing vector. In our case,

χaχa = −e2A(r), (39)

χaua = eA(r). (40)



Naked Singularities

Solution for c14 = 16/9

From the Kretschmann scalar, we can get the singularities which are at

rsing1 = 0,

rsing2 = 8α. (41)

Since the radial coordinate is always positive, the second singularity does not exist,
since α ≤ 0. So, the singularity at rsing1 is physical and

lim
r→r−sing1

K = +∞,

(42)

lim
r→r+

sing1

K = −∞, (43)

which is independent of α.
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χaχa = −r−
3
2

(
r − 4α +

√
(r − 8α)r

) 3
2

= 0, (44)

χaua = r−
3
4

(
r − 4α +

√
(r − 8α)r

) 3
4

= 0. (45)

We can see easily again these equations do not have any root with α < 0, hence, there
exists no horizon, neither Killing nor universal horizon.
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Figure: Plot of the metric component grr , for EA parameters c14 = 16/9, α = −1 and an
arbitrary Schwarzschild mass M = 4. The continuous red line represents the GR Schwarzschild
metric. The dashed blue line represents the EA solution. Calculating the limit r → +∞ we
obtain grr = e2B → 1, as we can see in this figure. Calculating the limit r → rsing1 = 0 we
obtain grr = e2B → 0, as we can see in this figure.
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Solution for c14 = 48/25

Figure: Plot of the metric component grr , for EA parameters c14 = 48/25, |γ| = 1 and an
arbitrary Schwarzschild mass M = 27/4. The continuous red line represents the GR
Schwarzschild metric. The dashed blue line represents the EA solution. Calculating the limit
r → +∞ we obtain grr = e2B → 1, as we can see in this figure. Calculating the limit
r → rsing1 = 0 we obtain grr = e2B → 0, as we can see in this figure.
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Solution for c14 = −16

Figure: Plot of the metric component grr , for EA parameters c14 = −16, |κ| = 1 and an

arbitrary Schwarzschild mass M = 32
1
3 /2. The continuous red line represents the GR

Schwarzschild metric. The dashed blue line represents the EA solution. Calculating the limit
r → +∞ we obtain grr = e2B → 1, as we can see in this figure. Calculating the limit
r → rsing1 = 0 we obtain grr = e2B → 0, as we can see in this figure.
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Conclusions

New singularities (both cosmological and black hole) appear in Einstein-aether theory
that are otherwise absent in General Relativity.
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