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Goal and Motivation

e Goal: To investigate Einstein-Aether gravity in light of the
recent Event Horizon Telescope (EHT) observations of the
M87*.

e M. Khodadi and E.N. Saridakis, Phys. Dark Univ. 32,
100835 (2021)

e The shape and size of the observed black hole shadow
contains information of the geometry in its vicinity, and thus
one can consider it as a potential probe to investigate
different gravitational theories.
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Einstein-Aether gravity

The action of the EA theory IS [T. Jacobson D. Mattingly, Phys. Rev. D 64, 024028 (2001)]

1 4
v—9(R 1
167 Gag /d xV=g(R+Lae), (1)
which includes the standard Einstein-Hilbert action Sgy plus
the Aether action.
The Lagrangian of the Aether field u* is defined as

S = Sen+ Sae =

Lag = — (01 9’ G + C20505 + 36560 — c4uau5g,w)
(Val")(Vau”) 4+ Xo(U? +1) . (2)

Ao is a Lagrangian multiplier, ensuring that the Aether
four-velocity u® is always timelike (i.e. u?> = —1).

All of four coupling constants (cy, ¢, c3, ¢4) are dimensionless,
and Gug is linked to the Newtonian constant Gy as
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Einstein-Aether gravity

Variations of the total action with respect to g,..,, u®, Ag yield,
respectively, the field equations

1
RY — 59" R = 8nGac T,
V¥, + csa, Vo + AU, =0,
G " =1,
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where
Ae __ L
To5 =V (J“(auﬁ) + Jap) U — Uipd, )

01| (Valy) (V5U") = (Vta) (V"05) |
1
+C48,85 + NUgUg — §gozﬁJ‘SUV(;u", (6)

Jo, = <c1 9’ g + C2056] + €355, — c4u°‘uﬁg,w> VU’ (7)

at = UV Ut (8)
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Spherically symmetric solutions

Then the metric for EA black holes can be written as
ds? = —e(r)dv? + 2f(r)dvdr + r?(d6? + sin® 0d¢?) , (9)

with the Killing vector x2 = (1,0,0,0), where e(r), f(r) are
r-dependent functions.
Additionally, we consider the Aether vector parametrization

u?(r) = (a(r), 8(r),0,0) , (10)

with «(r), and 5(r) the involved functions.

Concerning the metric components at infinity (boundary
conditions) we require to correspond to the asymptotically flat
solution, while those for the Aether components are set as
u?=(1,0,0,0).
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Spherically symmetric solutions

Two TypeS of exact solutions [E. Barausse et. al, Phys. Rev. D 83, 124043 (2011)].

e The first solution corresponds to the special choice of

coupling constants ¢4 = 0 (where ¢4 = ¢1 + ¢4) and
Ci23 # 0 (Where cio3 = ¢4 + € + C3):

2M 27013 2M\*
=12 st () ()
f(r) =1, (12)
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5(r):_ﬁ <r> 5 (14)
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Spherically symmetric solutions

e The second solution corresponds to ¢io3 = 0 and reads as

M 205 o (2U)°
en=1-- _8(1—013)( r) - (19)

f(r):1, (16)
1 (17)

(r)= :

2—Ci4 2M
5(”):—\/m77 (18)

where ¢i3 = ¢y + C3.

e ltis clear that by fixing ¢13 = 0 in the first solution and
c13 = 0 = c¢y4 in the second solution, then we recover the
standard Schwarzschild BH, as expected.
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Spherically symmetric solutions

Finally, since usually the metric is written in the form of the

(t, r, 0, ¢) coordinates, using the coordinate transformation
dt = dv — %, dr = dr , the metric (9) in the
Eddington-Finklestein coordinate system, can be re-expressed

as
2 2 dr? 2/ 402 | -2 2
dsc = —e(r)dt® + o) + re(do” + sin“ 0d¢“) , (19)
and hence the Aether field becomes

u? = <a(r) — igg,ﬁ(r),o,0> ) (20)
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Spherically symmetric rotating solutions

e The difficulty in deriving BH solutions in Lorentz violating
theories is related to the existence of casual boundaries,
indicating an event horizon. Thus, in EA-gravity (as well as
in Horava-Lifshitz one), due to complexities, we still do not
have the fully rotating BH solution.

e Despite this, one can utilize spherically symmetric BH
solutions in the Hartle-Thorne slow-rotation approximation
(first order), in order to derive the rotating BH solutions in
the slow limit.

Hence, applying the well-known Hartle-Thorne metric

B(r)dr?
e(r)
—er?sin? 0Q(r, 0)dtdp + O(€?) , (21)

ds® = —e(r)dt® + + r?(d6? + sin® 0d¢?)

with € a perturbative slow rotation parameter, we can derive the
rotating BH solution in the slow rotation limit.
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Spherically symmetric rotating solutions

In order to satisfy the asymptotically flat boundary conditions,
we require f-independence, namely Q(r,6) = Q(r) and

A(r,0) = A(r).

For the first static solution there exists a corresponding slowly
rotating black hole solution, with a spherically symmetric Aether
field configuration (\(r) = 0) and thus

4J
Qr) =+ -5, (22)

with Qg an integration constant that can be set to zero. Note
that for convenience we replace the angular momentum J by
introducing the rotation parameter a through

J
=

a (23)
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Black hole shadow in Einstein-Aether gravity

In order to study the geodesics structure of the photon
trajectories, we begin with the Hamilton-Jacobi equation

s 1 _,,0S 8S

o 29 oxroxr
where S and A denote the Jacobi action of the particle (here
photon) moving in the black hole spacetime, and the affine
parameter of the null geodesic.

Concerning the massless photon propagating on the null
geodesics, the Jacobi action S can be separated as

(24)

S=—Et+Jo+ S(r)+ Sy(0), (25)

where E and J respectively address the energy and angular
momentum of the photon in the direction of the rotation axis.
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Black hole shadow in Einstein-Aether gravity

Thus, the photon propagation obeys the following four

equations of motion, obtained from the variation of the Jacobi

action with respect to the affine parameter \:
a E 2MJa

dx  e(r)  e(nr¥

dr /R(r)
a2
do  /6(0)
dax 2

do J 2MEa
dx  sinor2 r3e(r)’
where K a separation constant and
R(r) = E?r* — (K + J?)r?e(r) — 4MaEJr ,
0(8) = K — J2 cot? 4.

(26)
(27)

(28)

(29)

(30)
(31)
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Black hole shadow in Einstein-Aether gravity

In order to investigate the photon trajectories one usually
expresses the radial geodesics in terms of the effective
potential Ugs(r) as

2
(3;) + Uert(r) =0 (32)
with
Uan(r) = 1+ (2 1y 1 4102 (39)

where £ = %, n= % The above two impact parameters £ and
n are actually the principle quantities for determining the photon
motion.
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Black hole shadow in Einstein-Aether gravity

To obtain the geometric shape of the BH shadow,
conventionally we have to find the photon critical circular orbit.
This can be extracted from the following unstable conditions:

AUer(r) 0o Ugsr(r)
= = — . 4
Ueff(r) 0 ) ar 0 ’ dr2 <0 (3 )
We can extract the geometric shape of the shadow via the
allowed values of ¢ and » that satisfy the above conditions.
Thus, with the implementation of (34) we arrive at

2(n+ &)re(r) — (n+ £2)r?e(r) + 12Mca=0 . (35)

By solving this equation one acquires the radius rps of the
photon sphere, which since we have taken the rotation effect
into account is expected to be between the two values rj.
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Black hole shadow in Einstein-Aether gravity

For slowly rotating BHs, solving conditions (34) we immediately
find that for the spherical-orbit photon motion the two
parameters £ and n have the form

~ rRre(r)—2e(r)]
€ = 4Male(r) + re'(r)] ’
—r8[—2e(r) + re'(r)]? + 48M?a2r? [e(r) + re/(r)]
16M2a2[e(r) + €/(r)]? .

Overall, the gravitational lensing effects result in deflection of
the photon passing a BH. Some photons have the chance of
reaching the distant observer after being deflected by the BH,
while some others will fall into it.

The photons that cannot escape the black hole are the ones
that create the black hole shadow.



Black hole shadow
[ee]ele]e] lelele)

Black hole shadow in Einstein-Aether gravity

To describe the shadow as seen by a distant observer, one
introduces the following two celestial coordinates X and Y:

. . do
_ 2
X = r*hm ( r*smeodr), (36)
ae
Y = r*llm re o (37)

where r, and 6, are respectively the distance between the
observer and the black hole, and the inclination angle between
the line of sight of the observer and the rotational axis of the
black hole. By applying the geodesics equations we obtain

X = —&(rps) csc by (38)
Y \/77 rps rps COt2 00 5 (39)

and therefore X2 + Y2 = £2(rys) + nps(rps) , where rps is the
radius of the unstable photon sphere. This is the expression of
the EA BHs shadow in the slow rotation limit.
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Einstein-Aether type | black hole solution

In order to draw the shadow of the BH solution we need to
calculate two essential quantities, namely the event horizon
radius re and the radius of the unstable photon sphere rps.

3M? 1 M2
re1’2 == T—S:I: 2\/—432+3M2—S, (40)

3M? 1 M2
re3,4=2+8i2\/—482+3M2+S, (41)

where
1/3
3MPQ + Q% + Ag Aq+/AF - 447
s= , Q= (42)
12Q 2

Ag = — 81cy3 M4, Aj = 729¢13 M7 (43)

4(1 — c13) 2(1 —ci3)
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Einstein-Aether type | black hole solution

Solutions ry » are imaginary and thus not physically interesting.
Nevertheless, by setting ¢35 to zero the third solution becomes
r3 = 2M, as expected from Schwarzschild background. Thus,
we deduce that r; addresses the event horizon radius re of the
Einstein-Aether type | BH solution.
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Einstein-Aether type Il black hole solution
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The Aether parameters c;3 and ¢4 and M87* observations

In light of the report released by EHT collaboration for the
shadow of M87” in k. Akiyama et al.[Event Horizon Telescope Collaboration], Astrophys. J. Lett.
875, L1 (2019)] for the angular size of the shadow, the mass and the
distance to M87* one respectively has the values

d = (42 £ 3) parcsec, (45)
M = (6.5+0.9) x 10° M, (46)
D = 168758 Mpc, (47)

where M is the Sun mass.

One can merge this information by introducing the single
number dysg7., Which quantifies the size of M87*’'s shadow in
unit mass:

dM87*zﬁjz11.Oi1.5. (48)

This combination can be used in order to confront with the
theoretically predicted shadows.
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Einstein-Aether type | black hole solution
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Left graph: The predicted diameter per unit mass d; for the Einstein-Ae ther type | black hole solution, as a function
of the Aether parameter c3, for several values of the rotational parameter: a = 0 (black - solid), a = 0.1 (blue -
dashed), a = 0.2 (red - dotted), a = 0.3 (purple - dashed-dotted). Right graph: d; as a function of the rotational
parameter a, for cj3 = —0.5 (blue - dashed), ¢cy3 = 0 (black- solid), cy3 = 0.5 (red- dotted). In both graphs the
shaded area mark the observationally determined diameter per unit mass of M87*’s shadow, namely djg7.., within

1o-error.
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Einstein-Aether type | black hole solution
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The allowed parameter region (green) in the cy3 — a plane, for fixed BH mass (M = 6 x 109MO), for the
Einstein-AEther type | black hole solution, that leads to diameter per unit mass d; in agreement with the

observationally determined one dyg7, within 1o-error
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Einstein-Aether type | black hole solution
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The allowed parameter region (green) in the cy3 — M(109MO) plane, for fixed rotation parameter values a = 0 (left
graph) and a = 0.2 (right graph), for the Einstein-Ae ther type | black hole solution, that leads to diameter d; in

agreement with the observationally determined one dyg7.. within 1o-error.
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Einstein-Aether type il black hole solution
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Left graph: The predicted diameter per unit mass dj, for the Einstein-Ae ther type Il black hole solution, as a
function of the Aether parameter cy4, for fixed ¢z = 0 and for several values of the rotational parameter: a = 0
(black-solid), a = 0.1 (blue - dashed), a = 0.2 (red - dotted), a = 0.3 (purple - dashed-dotted). Right graph: d; as
a function of the rotational parameter a, for fixed cy3 = 0 and for ¢4 = 0 (black-solid), ¢4 = 0.1 (blue - solid),

cy4 = 0.25 (red - dotted), cy4 = 0.5 (purple - dashed-dotted). In both graphs the shaded area mark the

observationally determined diameter per unit mass of M87*’s shadow, namely dyg7 .., within 1o-error.
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Einstein-Aether type il black hole solution
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Left graph: The predicted diameter per unit mass dj; for the Einstein-Ae ther type Il black hole solution, as a
function of the Aether parameter cy3, for fixed ¢4 = 0 and for several values of the rotational parameter: a = 0
(black-solid), a = 0.1 (blue - dashed), a = 0.2 (red - dotted), a = 0.3 (purple - dashed-dotted). Right graph: d; as
a function of the rotational parameter a, for fixed ¢y4 = 0 and for ¢13 = 0 (black-solid), ¢{3 = —0.2 (blue - solid),
cy3 = 0.2 (red - dotted). In both graphs the shaded area mark the observationally determined diameter per unit

mass of M87*’s shadow, namely djs7.., within 1o-error.
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Einstein-Aether type | black hole solution
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The allowed parameter regions (light green) in the ¢y4 — aand ¢y3 — a planes, for fixed BH mass
(M =6 x 109MO), for the Einstein-Ae ther type Il black hole solution, that leads to diameter per unit mass dj; in

agreement with the observationally determined one djyg7.. within 1o-error.
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Einstein-Aether type | black hole solution
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The allowed parameter regions (green) in the ¢i3 — M(109MO) plane (upper graphs) and ci4 — M(109MO)
planes (lower graphs), for fixed rotation parameter values a = 0 (left graphs) and a = 0.2 (right graphs), for the
Einstein-Ae ther type Il black hole solution, that leads to diameter dj; in agreement with the observationally

determined one djg7, within 1o-error.
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Conclusions

e We extracted the black hole solutions for EA gravity, and
we calculated the corresponding effective potential Ugs(r)
for the photons, the resulting event horizon radius r, and
the radius of the unstable photon sphere rps.

e We calculated the induced angular size §, which combined
with the mass and the distance can lead to a single
prediction that quantifies the black hole shadow size,
namely the diameter per unit mass d.

e Since dysg7. is observationally known from the EHT Probe,
we extracted the corresponding parameter regions of
instein-Aether theory in order to obtain consistency.

e In summary, Einstein-Aether black hole solutions are in
agreement with EHT M87* observation, and this may act
as an advantage for Einstein-Aether gravity.
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THANK YOU!
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