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Abstract.   First of all, we restate a proof of a highly localized special case of a 

metric tensor uncertainty principle first written up by Unruh. Unruh did not use 

the Roberson-Walker geometry which we do, and it so happens that the 

dominant metric tensor we will be examining, is variation in ttg . The metric 

tensor variations given by rrg , g  and g are negligible, as 

compared to the variation
ttg . Afterwards, what is referred to by Barbour as 

emergent duration of time t  is from the Heisenberg Uncertainty 

principle(HUP) applied to ttg in such a way as to give, in the Planckian space-

time regime a nonzero minimum non zero lower ground to a massive graviton, 

gravitonm . The lower bound to the massive graviton, is influenced by 

ttg and kinetic energy which is in the Planckian emergent duration of time 

t  as ( )E V− .  
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i. Introduction 

     The first matter of business will be to introduce a framework of the speed of 

gravitons in “heavy gravity” . Heavy Gravity is the situation where a graviton 

has a small rest mass and is not a zero mass particle, and this existence of 

“heavy gravity”  is important since eventually, as illustrated by Will [1,2] 

gravitons having a small mass  could possibly be observed via their macroscopic 

effects upon astrophysical events. Secondly, our manuscript’s inquiry also will 

involve an upper bound to the rest mass of a graviton. The second aspect of the 

inquiry of our manuscript will be to come up with a variant of the Heisenberg 

Uncertainty principle (HUP), involving a metric tensor, as well as the Stress 

energy tensor, which will in time allow us to establish a lower bound to the mass 

of a graviton, preferably at the start of cosmological evolution.  

 We reference what was done by Will in his living reviews of relativity article as 

to the ‘Confrontation between GR and experiment”. Specifically we make use of 

his experimentally based formula of [1, 2], with gravitonv the speed of a graviton, 

and gravitonm the rest mass of a graviton, and gravitonE in the inertial rest frame given 

as: 
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Furthermore, using [2], if the rest mass of a graviton is very small we can make a clear statement of 
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Here, 
at is the difference in arrival time, and   et is the difference in 

emission time/in the case of the early Universe, i.e. near the big bang, then if in 
the beginning of time, one has, if we assume that there is an average 

graviton gravitonE   ,  and  
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 and if 26~ 4.6 10 ( )D meters radii universe = , so one can set 
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And if one sets the mass of a graviton [3] into Eq. (1), then we have in the 
present era, that if we look at primordial time generated gravitons, that if one 
uses the  
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Note that the above frequency, for the graviton is for the present era, but that 
it starts assuming genesis from an initial inflationary starting point which is not 
a space – time singularity. 

Note this comes from a scale factor, if  
55 55~10 ~10scale factorz a −

− , 

i.e. 55 orders of magnitude smaller than what would normally consider, but 
here note that the scale factor is not zero, so we do not have a space – time 
singularity.  

We will next discuss the implications of this point in the next section, of a non-
zero smallest scale factor. Secondly the fact we are working with a massive 
graviton , as given will be given some credence as to when we obtain a lower 
bound, as will come up in our derivation of modification of the values[3] 
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2. Non zero scale factor, initially and what this is telling us 
physically. Starting with a configuration from Unruh. 

Begin with the starting point of [4, 5]   
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We will be using the approximation given by Unruh [4, 5],  
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If we use the following, from the Roberson-Walker metric [6]. 
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Following Unruh [4, 5], write then, an uncertainty of metric tensor as, with the 
following inputs  

2 110 35( ) ~10 , ~ 10Pa t r l meters− −    (10) 

Then, the surviving version of Eq. (7) and Eq. (8) is, then, if ~ttT    
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This Eq. (11) is such that we can extract, up to a point the HUP principle for 
uncertainty in time and energy, with one very large caveat added, namely if we 



 

 

 

 

 

 

use the fluid approximation of space-time[6] for the stress energy tensor as 
given in Eq. (12) below. 

( , , , )iiT diag p p p= − − −            (12) 

Then 

 ( )3
~ ~tt

E
T

V



 

           (13) 

Then, Eq. (11) and Eq. (12) and Eq. (13) together yield 
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How likely is ~ (1)ttg O ? Not going to happen. Why? The homogeneity of the 

early universe will keep   

1tt ttg g  =
        (15) 

In fact, we have that from Giovannini [6], that if  is a scalar function, 

and
2 110( ) ~10a t −

, then if  

2~ ( ) 1ttg a t           (16) 

Then, there is no way that Eq. (14) is going to come close to
2

t E   .  

Hence, the Mukhanov suggestion as will be discussed toward the end of this 
article, is not feasible.  Finally, we will discuss a lower bound to the mass of the 
graviton.  



 

 

 

 

 

 

3. How we can justifying writing very small 

~ ~ ~ 0rrg g g    +
 values.   

To begin this process, we will break it down into the following coordinates. 

In the rr,   and   coordinates, we will use the Fluid approximation, 

( , , , )iiT diag p p p= − − − [7] with 
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If as an example, we have negative pressure, with rrT ,T  and T  < 0, 

and p =− , then the only choice we have, then is to 

set ~ ~ ~ 0rrg g g    +
, since there is no way that p =− is zero 

valued. 

Having said this, the value of ttg  being nonzero, will be part of how we will 

be looking at a lower bound to the graviton mass which is not zero. 

4. Lower bound to the graviton mass using Barbour’s emergent time  

In order to start this approximation, we will be using Barbour’s value of 
emergent time [8, 9] restricted to the Plank spatial interval and massive 
gravitons, with a massive graviton [10]  
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Initially, as postulated by Babour [8, 9], this set of masses, given in the 
emergent time structure could be for say the planetary masses of each 
contribution of the solar system. Our identification is to have an initial mass 
value, at the start of creation, for an individual graviton.  

If ( )
2 2

emergent
t t = in Eq. (11), using Eq. (11) and Eq. (18) we can arrive at the 

identification of  
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Key to Eq. (19) will be identification of the kinetic energy which is written 
as E V− . This identification will be the key point raised in this manuscript. Note 
that [11 raises the distinct possibility of an initial state, just before the ‘big 
bang’ of a kinetic energy dominated ‘pre inflationary’ universe. I.e. in terms of 

an inflaton 
2 ( . ~ )P E V  [7]. The key finding which is in [11] is, that, 

if the kinetic energy is dominated by the ‘inflaton’ that  

2 6. . ~ ( )~K E E V a −−      (20) 

This is done with the proviso that w <-1, in effect, what we are saying is that 
during the period of the ‘Planckian regime’ we can seriously consider an initial 
density proportional to Kinetic energy, and call this K.E. as proportional to [7] 
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If we are where we are in a very small Planckian regime of space-time, we 
could, then say write Eq. (21) as proportional to 4g T [7], with g initial 



 

 

 

 

 

 

degrees of freedom, and T the initial temperature as just before the 
onset of inflation. The question to ask, then is, what is the value of the 
initial degrees of freedom, and what is the temperature, T, at the start of 
expansion? For what it is worth, the starting supposition, is that there 
would then be a likelihood for an initial low temperature regime  

 

 

5. Multiverse, and answering the Mukhanov hypothesis. Influence 
of the Einstein spaces 

Here, the initial
55

0 ~ ~ 10initiala a −
, or so and so the density in Eq. (21) at 

Planck time would, be proportional to the Planck Frequency [7] 
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This is at the instant of Planck time. We can then ask what would be an initial 
time contribution before the onset of Planck time. I.e. does Eq. (22) represent 
the initial value of graviton frequency?  

This value of the frequency of a graviton, which would be red shifted 
enormously would be in tandem with an initial time step of as given by [12] 
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This value for the initial time step would be probably lead to Pre Planckian time 
, i.e. smaller than 10^ -43 seconds, which then leads us to consider, what would 
happen if a multi verse contributed to initial space-time conditions as seen in 
Eq. (11) above. If the cosmic fluid approximation as given by Eq. (12) were 
legitimate, and one could also look at Eq. (13), then  
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But, then if one is looking at a multiverse, we first will start at the Penrose 
hypothesis for a cyclic conformal universe, starting with [13] 
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 However, in the multiverse contribution to Eq. (12) above, we would have, 

that  
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So, does something like this hold?  In a general sense? 
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If the fluid approximation as given in Eq. (12) and Eq. (13) hold, then Eq. (27) 

conceivably could be identifiable as linkable to. 
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If we could write, say 
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Then, if each j is the jth contribution of N “multiverse” contributions to a new 

single universe being nucleated, one could say that there was, indeed, likely an 

“averaging” and that the causal barrier which Mukhanov spoke of, as to each, 

a t  actually to each graviton entering into the present universe, one could 

mathematically average out the results of a sum up of each of the contributions 

from each prior to a present universe, according to 
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If Eq. (30) held, then we could then write 
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Instead, we have, Eq. (28), and that it is safe to say that for each collapsing 

universe which might contribute to a re cycled universe that the following 

inequality is significant. 
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Hence, the absence of an averaging procedure, due to a multiverse, would then 

rule against a causal barrier, as was maintained by Mukhanov, in his discussion 

with the author, in Marcel Grossman 14, in Italy. Then the approximation say of  
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Would not hold, and that may lead to a breakdown of the Causal barrier 

hypothesis of Mukhanov, which the author emphatically disagreed with. 

6. Conclusion. Considering Eq. (6) and Eq. (11) in lieu of Einstein 

space, and further research questions 

A way of solidifying the approach given here, in terms of early universe GR 

theory is to refer to Einstein spaces, via [14] as well as to make certain of the 



 

 

 

 

 

 

Stress energy tensor [15] as we can write it as a modified Einstein field 

equation. With, then   as a constant.  

        
ij ijR g=

                                                                      (34) 

Here, the term in the Left hand side of the metric tensor is a constant, so then 

if we write, with R also a constant [15]  
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The terms, if we use the fluid approximation given by Eq. (12) as well as the 

metric given in Eq. (9) will then tend to a constant energy term on the RHS of 

Eq. (35) as well as restricting i, and j, to t and t 

So as to recover, via the Einstein spaces, the seemingly heuristic argument 

given above. Furthermore when we refer to the Kinetic energy space as an 

inflaton where we assume that the potential energy is proportional to V , so as 

to allow us to write  
2 ( . ~ )P E V  [7], we can also then utilize the 

following operator equation for the generation of an ‘inflaton field’ given by 

the following set of equations 
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In the case of the general elliptic operator K  if we are using the Fulling 

reference, [16] in the case of the above Roberson-Walker metric, with the 

results that the elliptic operator, in this case become,  
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Then, according to [16], if R above, in Eq. (37) is initially a constant, we will see 

then, if m is the inflation mass, that 
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Then 
1c  as an unspecified, for now constant will lead to a first approximation of 

a Kinetic energy dominated initial configuration, with details to be gleaned 

from [16,17,18] to give more details to the following equation, R here is linked 

to curvature of space-time, and m is an inflaton mass, connected with the field  

( ) cos( )t t K f = with the result that 

( )2 2 2

1( ) ( )t m R c V     + +      (39) 

If the frequency, of say, Gravitons is of the order of Planck frequency as in Eq. 

(22), then this term, would likely dominate Eq. (39). More of the details of this 

will be worked out, and also candidates for the ( )V  will be ascertained, 

most likely, we will be looking the Rindler Vacuum as specified in [19] as well as 

also details of what is relevant to maintain local covariance in the initial space-

time fields as given in [20] 

Why is a refinement of Eq. (39) necessary? 

The details of the elliptic operator K will be gleaned from [16, 17, 18] whereas 

the details of inflaton 
2 ( . ~ )P E V  [7] are important to get a 

refinement on the lower mass of the graviton as given by the left hand side of 

Eq. (24). We hope to do this in the coming year. The mass, m, in Eq. (37) for the 

inflaton, not the Graviton, so as to have links to the beginning of the expansion 

of the universe. We look to what Corda did, in [21] for guidance as to picking 

values of m relevant to early universe conditions. 

Finally, as far as Eq. (39) is concerned, there is one serious linkage issue to 

classical and quantum mechanics, which should be the bridge between classical 



 

 

 

 

 

 

and quantum regimes, as far as space time applicability. Namely, from Wald 

(19), if we look at first of all arbitrary operators, A and B 
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As we can anticipate, the Pre Planckian regime may the place to use classical 

mechanics, and then to bridge that to the Planckian regime, which would be 

quantum mechanical. Taking [19] again, this would lead to a sympletic 

structure via the following modification of the Hamilton equations of motion, 

namely we will from (19) get the following re write,  
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Then there exists a re formulation of the Poisson brackets, as seen by 

 ,f g f g
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    (42) 

So, then the following, for classical observables, f, and g, we could write, by 

[19] 
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Then, we could write, say Eq. (40) and Eq. (43) as 
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If so, then we can set, in the interconnection between the Planck regime, and 

just before the Planck regime, say, by setting classical variables, as given by 
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Then by utilization of Eq. (44) we may be able to effect more precision in our 

early universe derivation, especially making use of derivational work, in 

addition as to what is given here, as to understand how to construct a very 



 

 

 

 

 

 

early universe partition function Z based upon the inter relationship between 

Eq. (44) and Eq. (45) so as to write up an entropy based upon, as given in [19] 

( ) lnS entropy Z E= +     (46) 

If this program were affected, with a first principle construction of a partition 

function , we may be able to answer if Entropy were zero in the Planck regime, 

or something else, which would give us more motivation to examine the sort of 

partition functions as stated in [22, 23].See appendix A as to possible scenarios. 

Here keep in mind that in the Planck regime we have nonstandard physics. 

Appendix A indicate that due to the variation we have worked out in the 

Planckian regime of space-time that the initial entropy is not zero.  

 

Appendix A, scenarios as to the value of entropy in the beginning of 

space-time nucleation  

We will be looking at inputs from page 290 of [23] so that if 
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And Ng’s infinite quantum statistics, we have to first approximation [24, 25] 
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This is due to a very small but non vanishing ttg with the partition 

functions covered by [23], and also due to [24,25] with countn a non-zero 

number of initial ‘particle’ or information states, about the Planck regime of 

space-time, so that the initial entropy is nonzero. 
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