

Atomic clocks sensitive to variation of the fine structure constant

Vladimir Dzuba¹

Victor Flambaum¹, Saleh Alehabi¹, Jiguang Li², Stephan Schiller³

¹University of New South Wales, Sydney, Australia ²Institute of Applied Physics and Comptutational Mathematics, Bejing, China ³Institut fur Experimentalphysik, Heinrich-Heine-Universitat Dusseldorf, Germany

Motivation

- Manifestation of new physics (NP) at low energy is expected to be small => high accuracy is needed.
- The highest accuracy of the measurements is in optical clocks, e.g. for the ¹S₀ ³P^o₀ transition in Yb, δω/ω ~ 10⁻¹⁸!
- Optical frequencies depend on the fine structure constant α . NP may manifest itself via apparent variation of α .

For any atomic frequency

$$\omega = \omega_0 + q \left[\left(\alpha / \alpha_0 \right)^2 - 1 \right]$$

where $\omega_0 = \omega(\alpha = \alpha_0)$ and *q* is a sensitivity coefficient found from atomic calculations as a numerical derivative

$$q = \frac{\omega(x = \delta) - \omega(x = -\delta)}{2\delta} \quad \text{where} \quad x = \left[\left(\frac{\alpha}{\alpha_0} \right)^2 - 1 \right]$$

Searching for time evolution of **alpha** can be done by monitoring time evolution of <u>dimensionless</u> ratio of two atomic frequencies:

$$\frac{\partial}{\partial t} \ln \frac{\omega_1}{\omega_2} = \left(\frac{2q_1}{\omega_1} - \frac{2q_2}{\omega_2}\right) \frac{1}{\alpha} \frac{\partial \alpha}{\partial t}$$

K=2q/ω is an <u>enhancement factor</u>. We need <u>two</u> transitions with large and different *K*. Two ways to get large $K=2q/\omega$:

- 1. Large *q*.
- 2. Small *(*).

Looking for large K due to small ω is <u>wrong</u> because accuracy of the measurements ($\delta \omega$) is equally important.

Figure of merit: on *w*.

$$\frac{2q}{\omega} / \frac{\delta \omega}{\omega} = \frac{2q}{\delta \omega} \quad \text{does not depend}$$

Example: **Dy** atom.

1. $4f^{10}5d6s^{3}[10]_{10}$ E=19797.06 cm⁻¹, q=6008 cm⁻¹. 2. $4f^{9}5d^{2}6s^{3}[10]^{0}_{10}$ E=19797.06 cm⁻¹, q=-23708 cm⁻¹. *K* ~ 10⁸ Leefer *et al,* $\frac{1}{\alpha} \frac{\partial \alpha}{\partial t} = (-5.8 \pm 6.9) \times 10^{-17} \,\mathrm{yr}^{-1}$ PRL 111, 060801 (2013) (Dy/Cs) Rosenband et al, $\frac{1}{\alpha} \frac{\partial \alpha}{\partial t} = (-1.6 \pm 2.3) \times 10^{-17} \text{ yr}^{-1} \text{ Science 319, 1808 (2008) (Al^+/Hg^+)}$ Godun *et al,* $\frac{1}{\alpha}\frac{\partial\alpha}{\partial t} = (-0.7 \pm 2.1) \times 10^{-17} \,\mathrm{yr}^{-1}$ PRL **113**, 210801 (2014) (Yb^+/Yb^+) $\frac{1}{\alpha}\frac{\partial\alpha}{\partial t} = 1.0(1.1) \times 10^{-18} \text{ yr}^{-1}$ Lange *et al,* PRL 126, 011102 (2021) (Yb^+/Yb^+)

I.e. **Dy** is good due to large q, not small ω .

How to get large q?

Relativistic energy shift:

$$\Delta E = -\sqrt{\frac{|E|^3}{2}} (\alpha Z)^2 \left[\frac{1}{j+1/2} - C(Z, j, l) \right]$$

Ways to get large q (
$$q = \Delta E_a - \Delta E_b$$
):

- 1. Large |E| (highly charged ions).
- 2. Large *Z*.
- 3. Large Δj (i.e. $s_{1/2} f_{7/2}$, $p_{1/2} f_{7/2}$, etc. transitions).

Can we have all three? HCI with p-f or s-f level crossing

J. C. Berengut, V. A. Dzuba, V. V. Flambaum, A. Ong, PRA 86, 022517 (2012).

Progress for HCI is slow

Experimental problems

- Almost no data need to start from scratch.
- No strong optical E1 transitions.
- Poor support from theory.

Theoretical problems

- Low accuracy of the calculations, $h\omega = E_a + \delta_a - E_a - \delta_a; \quad \delta_a - \delta_b \sim h\omega.$
- No experimental data to test the methods.

HCI are still promising but more efforts are needed.

We focus on optical transitions in neutral or nealy neutral systems with large Z and large Δj .

The transitions must have features of optical clock transitions

The features are (H. Katori)

- Optical transition: 5000 cm⁻¹ < $h\omega$ <43000 cm⁻¹.
- From ground to a metastable state: 100 s < τ < 10000 s.
- The transition is not sensitive to perturbations (BBR, Zeeman, Stark, etc.).
- There are other transitions with rates > 10^3 s⁻¹.

Clock states with large q in neutral or nearly neutral systems.

	Transition	hω	q	K
Ag I	$4d^{10}5s^{2}S_{1/2} - 4d^{9}5s^{2}D_{5/2}$	30242	-11300	-0.75
Yb I	4f ¹⁴ 6s ^{2 1} S ₀ - 4f ¹⁴ 6s6p ³ P ^o ₀	17288	2714	0.31
Yb I	$4f^{14}6s^{2} {}^{1}S_{0} - 4f^{13}5d6s^{2} J=2$	23188	-44290	-3.82
Yb II	$4f^{14}6s^{2}S_{1/2} - 4f^{13}6s^{2}F^{0}_{7/2}$	21418	-56737	-5.30
Yb II	$4f^{14}6s^{2}S_{1/2} - 4f^{14}5d^{2}D_{5/2}$	24333	12582	1.03
Yb III	$4f^{14} {}^{1}S_0 - 4f^{13}5d J=2$	33385	-38150	-2.29
Yb III	4f ¹⁴ ¹ S ₀ - 4f ¹³ 5d J=0	45277	-32800	-1.45
Au I	5d ¹⁰ 6s ² S _{1/2} - 5d ⁹ 6s ²² D _{5/2}	9161	-38550	-8.4
Au I	5d ⁹ 6s ^{2 2} D _{5/2} - 5d ⁹ 6s6p ⁴ F ^o _{9/2}	39536	24200	1.2
Hg II	5d ¹⁰ 6s ² S _{1/2} - 5d ⁹ 6s ²² D _{5/2}	35514	-52200	-2.94

Green – working clocks; black – old proposals, red – new proposals; Flambaum and Dzuba, CJP **87**, 25 (2009); Dzuba, Flambaum, Schiller, PRA **98**, 022501 (2018); Dzuba, Allehabi, Flambaum, Li, Schiller, PRA **103**, 022822 (2021).

Energy levels of Au

At least two clock states in optical region. Both are sensitive to α -variation $(6s_{1/2}-5d_{5/2} \text{ and } 6s_{1/2}-6p_{3/2})$

States are not sensitive to

V.A. Dzuba, Saleh O. Allehabi, V.V. Flambaum, Jiguang Li, S. Schiller, PRA **103**, 022822 (2021).

Energy levels of Yb

PRA 98, 022501 (2018).

```
E=23188, q=-44290, τ=200 s
E=19710, q=5505, τ=15 s
E=17992
E=17288, q=2714, τ=23 s
```

At least two new clock states in optical region. One is sensitive to α -variation (4f_{7/2}-5d_{3/2} and 6s_{1/2}-6p_{3/2} transitions).

States are not sensitive to perturbations.

New clock states have large J (due to large Δj), is this a problem?

• Yb (for isotopes with I=0, F=J, J=2) electric quadrupole shift

$$\Delta E_Q = \frac{3J_z^2 - J(J+1)}{J(2J-1)}Q\frac{\partial \epsilon_z}{\partial z}$$

Averaging over states with $J_z=0$ and $J_z=\pm 2$

suppresses both quadrupole and liner Zeeman shifts.

• Au (*I*=3/2, *J*=5/2, *F*=1,2,3,4; *J*=9/2, *F*=3,4,5,6)

$$\Delta E_Q = \frac{3F_z^2 - F(F+1)}{F(2F-1)}Q\frac{\partial\epsilon_z}{\partial z}$$

 ΔE_q =0 for F=3, F_z=±2;

Linear Zeeman shift can be suppressed by averaging between F_z =+2 and F_z =-2.

Search for NP using King plot.

Isotope shift for two transitions can be linked as

$$\frac{\nu_{bij}}{\mu_{ij}} = \frac{F_b}{F_a} \frac{\nu_{aij}}{\mu_{ij}} + \left(K_b - \frac{F_b}{F_a}K_a\right) + \frac{\alpha_{\rm NP}}{\alpha} \left(D_b - \frac{F_b}{F_a}D_a\right) \frac{\Delta N}{\mu_{ij}}.$$

+ straight line on the ν_{a}/μ , ν_{b}/μ plane

- **NP** term breaks linearity

$$D = e^2 \langle \exp(-Mcr/\hbar)/r \rangle$$

M – mass of new boson.

Minimum data:

2 transitions; 4 isotopes.Yb has 7 stable isotopes (5 with /=0)

Work is in progress for Yb/Yb+ (see Dionysios Antypas' talk yesterday).

More new physics ...

A Scalar term in SME

$$\delta H_{S} = -\left(C_{0}^{(0)} - \frac{2U}{3c^{2}}c_{00}\right)\frac{p^{2}}{2}$$

Leads to dependence of atomic frequencies on the date in the year (EEP violation)

Interpretation for the scalar term

a. Non-relativistic limit

$$\delta H_s = -\left(C_0^{(0)} - \frac{2U}{3c^2}c_{00}\right)\frac{p^2}{2}$$

Using Virial theorem ($\Delta P^2 = -2h\omega$) we get

$$\frac{\delta\omega}{\omega} = \left(C_0^{(0)} - \frac{2U}{3c^2}c_{00}\right) - \text{The same for all transitions}$$

The effect is unobservable in ratios ω_1/ω_2 (both optical)

 $\delta \omega$ can still be measured using Cs clocks.

b. Relativistic case

$$\frac{\delta\omega}{\omega} = R \left(C_0^{(0)} - \frac{2U}{3c^2} c_{00} \right) \equiv RC(U) \qquad \text{R is relativistic factor}$$

For two transitions

$$R = -\frac{\Delta E_2 - \Delta E_1}{2\omega}$$

$$\delta \ln \frac{\omega_1}{\omega_2} = \frac{\delta \omega_1}{\omega_1} - \frac{\delta \omega_2}{\omega_2} = (R_1 - R_2)C(U)$$

<u>Very similar to the case of α-variation</u>! Same transitions can be used. Measurements are the same, interpretation is different.

Example: Comparing Al⁺ and Hg⁺ clocks between 11/2006 and 11/2007

(Rosenband et al, Science 319, 1808 (2008))

 $(f_{AI}/f_{Hg} - 1.05287) \times 10^{-16}$

Fitting the measurements with

 $A\cos(\omega t)$ +B we get

 c_{00} =(-3.0+/-5.7)x10⁻⁷

V. A. Dzuba and V. V. Flambaum PRD **95**, 015019 (2017)

$$\delta H_s = -\left(C_0^{(0)} - \frac{2U}{3c^2}c_{00}\right)\frac{p^2}{2}$$

See also Sanner *et al*, Nature **567**, 204 (2019), Lange *et al*, PRL **126**, 011102 (2021), and a talk by E. Peik on 8.7.2021, 17:30.

LLI violation

A Tensor term in the SME
$$\delta H_T = -\frac{1}{6}C_0^{(2)}T_0^{(2)} \equiv -\frac{1}{6}C_0^{(2)}(\vec{p}^2 - 3p_z^2)$$

leads to dependence of atomic frequencies on the <u>orientation</u> of the system.

z - Quantization axis (Vertical magnetic field at experiment site).

$$\Delta E \propto 3J_z^2 - J(J+1)$$

Metastable states with $J \ge 1$ are needed. New clock states of Yb and Au are good candidates.

Recent progress in experimental study of LLI violation

- Dy, Hohensee *et al*, PRL **111**, 050401 (2013). State A: 4f¹⁰5d6s, J=10, E=19798 cm⁻¹ State B: 4f⁹5d²6s, J=10, E=19798 cm⁻¹ Monitoring rf A-B transition limits LLI violation at **10⁻¹⁷**.
- Ca⁺, Pruttivarasin *et al*, Nature 517, 592 (2015).
 Monitoring transitions between Zeeman components of the 3d_{5/2,m} state limits LLI violation at 10⁻¹⁸.
- Yb⁺ (proposal) Dzuba *et al*, Nature Physics, (2016). Monitoring transitions between Zeeman components of the 4f¹³6s² ²F⁰_{7/2,m} state may limit LLI violation at 10⁻²³.
- Yb⁺ Sanner *et al*, Nature 567, 204 (2019).
 Comparing two Yb⁺ clocks over 6 months limits LLI violation at 10⁻²¹.

Conclusion

New clock states in **Yb** and **Au** bring new opportunities in search for new physics, such as α -variation, new boson, **EEP** and **LLI** violations, etc.