

Searching for Gamma-Ray Bursts with the High-Altitude Water Cherenkov (HAWC) Observatory

Kristi L. Engel for the HAWC Collaboration

- →Satellites and IACTs have shown that GRBs are capable of producing VHE photons
 - GRB 190114C Observed up to 1 TeV by the MAGIC Telescopes
- →Detection of such high-energy emission would provide key information about the origins of prompt GRB emission as well as other potential physics:
 - Insights into acceleration mechanisms estimate bulk Lorentz factor
 - Probe extragalactic background light (EBL)
 - Test for Lorentz Invariance Violation

DOI: 10.1038/s41586-019-1750-x

The High-Altitude Water Cherenkov Gamma-Ray Observatory

Pico de Orizaba Puebla, Mexico (19°N)

-rex for scale

5m tall, 7.3 m diameter ~200,000 L of water

22,000 m²

4 PMTs facing upwards collect Cherenkov light produced by secondary particles

4,100 m.a.s.l.

Energy range: ~300 GeV - >100TeV

Field of view: **45° from zenith**

Observing time: >95% of the time

Angular resolution: ~0.1° - 1°

The HAWC Observatory

 Outrigger array in operation since August 2018
 1/80th the size of the main-array tanks
 One upward-facing PMT each
 Provides enhanced sensitivity above 10 TeV
 Accurately determine core position for showers off the main tank array
 Increase effective area above 10 TeV by 3–4x

The HAWC Observatory

Uses the water-Cherenkov technique to detect air showers from particles incident on Earth's atmosphere
 Reads in every PMT; processing in near real time
 Large field-of-view; can see 2/3 of the sky every day

x [meter]

The HAWC Observatory

→ Uses the water-Cherenkov technique to detect air showers from particles incident on Earth's atmosphere
 • Reads in every PMT; processing in near real time
 → Large field-of-view; can see 2/3 of the sky every day

The Gamma-Ray Detector Landscape•Wide field of view •Wide field of view

Narrow field of view
Limited duty cycle (~15%)
Excellent sensitivity

HAWC and GRB **Emissions**

- →HAWC's wide field of view (~2 sr), large effective area, and near-continuous uptime make it ideal to search for GRB emission at the highest energies
- \rightarrow Can observe GRBs before, during, and after the prompt emission phase measured by satellites
 - Essential for determining the start time and duration of prompt emission at ~300 GeV— relatively unknown given the paucity of photons detected by satellites at these energies

HAWC and GRB Emissions

- →VHE emissions from GRBs have only been seen late in time (afterglow)
 - IACT untriggered observations limited by slewing time and narrow field of view
- →Optimal complement to observations by satellites

Broadband GRB spectrum with a band function (black) and an additional hard power-law component (red).

- →Comprises two dedicated analyses:
 - 1. A self-triggered, all-sky search
 - 2. Rapid response follow-up of GRBs reported by satellites
- →Both methods are performed in real time at the HAWC site as well as on archival data
 - Archival data especially important for following up on reported emission from IACTs
- →Can also be used to follow-up and search for other transients with timescales and fluxes similar to GRBs
 - E.g., Primordial Black Holes, Fast Radio Bursts

- →Continuously searches for GRB transients with E > 300 GeV using sliding time windows typical of peak structures within GRB light curves
- →Have ability to pass external triggers in order to perform a limited sliding time window search near the trigger time and location of known GRBs
 - Allows fine-tuning of start time of VHE emission when performing follow-ups
 - Can perform look-backs, not just the lookforward that IACTs, etc., can

Plot by Joshua Wood

- →We use triggers from Swift BAT, the *Fermi*-LAT, and the *Fermi*-GBM that fall within HAWC's field of view to search for indications of VHE GRB emissions in our data
 - Events can be separated based on quality and background (among other improvements)
- →Fixes the search window start time to match the external trigger provided by a satellite
 - Spatial portion of the search also restricted to the reported error on the GRB location
- →Ability to test for delayed-onset VHE emission when performing follow-ups of satellite-detected GRBs

Assuming z=0.310 short GRBs long GRBs 1AWC Fluence [erg/cm²] 80-800 GeV 10^{-4} 10-5 10^{-6} 10^{-7} PRELIMINARY 10^{-8} 10^{-8} 10^{-7} 10^{-6} 10^{-5} 10^{-3} 10^{-4} GBM Fluence [erg/cm²] 10-1000 keV

Even for a non-detection, upper limits for nearby GRBs with known redshift can place strong constraints on models

Very-High-Energy GRBs and HAWC

- →The GRBs that have been detected to-date with a veryhigh-energy component were not in the HAWC field of view:
 - GRB 190114C, detected by MAGIC
 - GRB 180720B and GRB 190829A, detected by H.E.S.S.
- →HAWC would likely have detected GRB 190114C if it had happened in its field of view

HAWC and the GRB Community

→If HAWC were to trigger on a GRB, we are set up to alert the community/coordinate alerts between different experiments:

Would use GCN/ATels for confirmed significant observations

- HAWC has sent out 47 circulars in the last year
- Already using AMON (the Astrophysical Multimessenger Observatory Network)
 for sub-threshold triggers
 - Report "hotspot" parameters for events above the estimated cosmic-ray background level >2.75 σ
 - AMON sends alerts to GCN if event passes the false-alarm-rate threshold

Future Outlook

- →While HAWC has yet to observe a significant signal from a GRB, either self-triggered or as a follow-up, we are very optimistic that recent improvements will greatly improve our sensitivity to GRBs
 - Better reconstruction for lowenergy events (noise reduction)
 - Multi-bin maximum-likelihood analysis for short timescales
 - Multi-shower fit increases statistics
 - Improved angular resolution for multiple showers on the array
 - Data re-reconstructed around known GRBs

Thank you! Miigwetch!

- The entire HAWC Collaboration for their tireless work towards new and exciting physics
- The *Fermi*-LAT, H.E.S.S., MAGIC, and VERITAS Collaborations for their continued partnership

Office of Science

[1] The MAGIC Collaboration (2019) Teraelectronvolt emission from the γ-ray burst GRB190114C, DOI: 10.1038/s41586-019-1750-x

[2] The HAWC Collaboration (2019) Measurement of the Crab Nebula Spectrum Past 100 TeV with HAWC, <u>arXiv:1905.12518</u>

[3] G. Maier et al. (2019) Performance of the Cherenkov Telescope Array, arXiv:1907.08171

[4] J. Wood (2016) An All-Sky Search for Bursts of Very High Energy Gamma Rays with HAWC, <u>arXiv:1801.01550</u>

[5] M. Ajello et al. (2019) A Decade of Gamma-Ray Bursts Observed by *Fermi*-LAT: The Second GRB Catalog, DOI: 10.3847/1538-4357/ab1d4e

[6] J. Wood (2017) Results from the first one and a half years of the HAWC GRB program, <u>PoS(ICRC2017)619</u>

[7] H.A. Ayala Solares (2019) AMON: TeV Gamma and Neutrino Coincidence Alerts from HAWC and IceCube subthreshold data, <u>PoS(ICRC2019)841</u>

