High-Energy Emission from GRBs: Theoretical Perspectives

Jonathan Granot

Open University of Israel & George Washington University

The 16th Marcel Grossmann Meeting –MG16, Online, July 7, 2021

Outline of the Talk:

- High-Energy (HE) emission mechanisms
- GRB prompt HE emission observations vs. theory:
 - ◆ Delayed HE onset, HE spectral component
 - ↔ ⇒ emission region: Γ, R
 - ♦ Long-lived HE emission
- High-energy afterglow & GRB 130427A:
 - Implications for relativistic collisionless shock physics
- non-GRB physics: EBL, Lorentz invariance violation

GRB: High Energy Emission Processes Leptonic: Inverse-Compton or Synchrotron-Self Compton: $E_{p,SSC}/E_{p,syn} \sim \gamma_e^2$, $L_{SSC}/L_{syn} = Y$, $Y(1+Y) \sim \epsilon_{rad}\epsilon_e/\epsilon_B$

Hadronic processes: photopair production $(p+\gamma \rightarrow p+e^+e^-)$, proton synchrotron, pion production via $p-\gamma$ (photopion) interaction or p-p collisions (inefficient, especially in afterglow)

Photospheric quasi-thermal emission $@ \leq 0.1 \text{ MeV} (\text{not HE})$

GRB: High Energy Emission Processes Leptonic: Inverse-Compton or Synchrotron-Self Compton: $E_{p,SSC}/E_{p,syn} \sim \gamma_e^2$, $L_{SSC}/L_{syn} = Y$, $Y(1+Y) \sim \varepsilon_{rad}\varepsilon_e/\varepsilon_B$ **GRBs 090510, 090926A:** Y varies, and sometimes Y > 1 **GRB080916C**: single dominant emission mechanism \Rightarrow if synchrotron, SSC is expected, and can avoid detection if $E_{\text{peak,SSC}} \gg 10 \text{ GeV} (\gamma_e \gg 100), \text{ or if } Y \approx \epsilon_e / \epsilon_B \leq 0.1$

GRB: High Energy Emission Processes **Leptonic**: Inverse-Compton or Synchrotron-Self Compton: $E_{p,SSC}/E_{p,syn} \sim \gamma_e^2$, $L_{SSC}/L_{syn} = Y$, $Y(1+Y) \sim \varepsilon_{rad}\varepsilon_e/\varepsilon_B$ **GRBs 090510, 090926A:** Y varies, and sometimes Y > 1 **GRB080916C**: single dominant emission mechanism \Rightarrow if synchrotron, SSC is expected, and can avoid detection if $E_{\text{peak,SSC}} \gg 10 \text{ GeV} (\gamma_e \gg 100), \text{ or if } Y \approx \epsilon_e / \epsilon_B \leq 0.1$ Parameter space study (Beniamini & Piran 2013): $0.1 < \epsilon_{\rm e} / \epsilon_{\rm B} < 10^4 \ (0.1 \le {\rm Y} \le 100), \ 300 \le \Gamma \le 3000,$ $3 \times 10^3 \leq \gamma_e \leq 10^5$, $10^{15} \text{ cm} \leq \mathbf{R} \leq 10^{17} \text{ cm}$ $(E_{\text{peak,SSC}} \sim E_{\text{KN}} \sim \Gamma \gamma_{e} m_{e} c^{2} \sim 1.6(1+z)^{-1} \Gamma_{2.5} \gamma_{e,4} \text{ TeV} \Rightarrow \text{CTA?})$

Delayed onset of High-Energy Emission GRB080916C GRB090510

The 1st LAT peak coincides

with the 2nd GBM peak ■ Delay in HE onset: ~ 4-5 s (Abdo et al. 2009, Nature, 462, 331)

The first few GBM peaks are missing in LAT but later peaks coincide; the delay is 0.1-0.2 s

Distinct High-Energy Spectral Component

Clearly (>5o) exists in several LAT GRBs, but very common in the brightest LAT GRBs
Suggests that it is common but good photon statistics is needed for clear evidence

Late onset/HE spectral component: Possible Origin
Leptonic: inverse-Compton (or synchrotron self-Compton)?
A gradual increase in the HE photon index β (determined by the electron energy dist.) is not naturally expected
Hard to account for the different photon index values of the HE component & the Band spectrum at low energies

◆ Hard to produce a low-energy power-law (GRB090902B)

Late onset/HE spectral component: Possible Origin
Hadronic: (pair cascades, proton synchrotron) ?
Does not naturally account the gradual increase in β
GRB090510: large energy needed: E_{total}/E_{γ,iso} ~ 10² - 10³
GRB090902B: synchrotron emission from secondary e[±] pairs can naturally explain the power-law at low energies

Constraints on Г for Fermi LAT GRBs F_{min}: no high-energy cutoff due to intrinsic pair production ⇒ lower limit on the Lorentz factor of the emitting region **Fermi**: more robust limits – don't assume photons >E_{obs.max} ■ $\tau_{\gamma\gamma} \propto \Gamma^{2\beta}/R \Rightarrow \Gamma_{min}$ requires assuming R(Γ) (e.g. R ~ $\Gamma^2 c\Delta t$) For bright LAT GRBs (long/short): $\Gamma \ge 10^3$ for simple model (steady-state, uniform, isotropic) but $\Gamma \ge 500$ for more realistic time-dependent self-consistent thin shell model (JG et al. 2008) **GRB 090926A:** high-energy cutoff – if due to intrinsic pair production then $\Gamma \sim 300 - 700$

Long-Lived High-Energy emission

10⁵⁴

10⁵³

10⁵²

10⁵

10⁵⁰

1049

10⁴⁸

10⁵⁵

10⁵⁴

cleare

GRB 1901140

100

Time since trigger / (1+z) [s]

1000

- Seen in many/most LAT GRBs: a power-law in time/energy $\propto t^{-\alpha_L} E^{\beta}$ with $\beta \approx -2$ and $\alpha_L \sim 1 1.5$
- Consistent with afterglow @ t ≫ T₉₀ ² (at t ≤ T₉₀ sharp spikes ⇒ not afterglow)
 Prompt to afterglow transition?
- X-ray flares @ HE? (GRB100728A?)
 Hadronic, pair echo, SSC,... ???

- LAT detected emission up to ~ 20 hr after GRB $\blacksquare > 10 \text{ GeV } \gamma$'s observed up to hours after GRB May arise at least partly from the prompt γ -ray emission up to few 10^2 s ■ At later times there is no prompt emission, only a
 - simple power-law decay: afterglow

- LAT detected emission up to ~ 20 hr after GRB
 >10 GeV γ's observed up to hours after GRB
 May arise at least partly from the prompt γ-ray
 - emission up to few 10^2 s
- At later times there is no prompt emission, only a simple power-law decay: afterglow

LAT HE photons violate:

$$E_{\text{syn,max}} \sim \frac{\Gamma}{(1+z)} \frac{m_e c^2}{\alpha} \approx 5 \left(\frac{\Gamma}{100}\right) \text{GeV}$$

- Based on a one-zone model balancing electron energy gains and losses: t_{acc} ~ t_{syn}
- $t_{acc} \sim 1/\omega_L = R_L/c$ (extremely fast) or $P_L = 2\pi/\omega_L$ (still very fast but a bit more realistic)
- An "easy way out" would be if SSC emission dominated at highest LAT energies (Fan+

at highest LAT energies (Fan+ 2013; Liu+ 2013), but it doesn't work

 ⇒ E_{syn,max} appears to be truly violated ⇒ ≥ 1 assumption must break
 Non-uniform magnetic field?
 E_{syn,max} grows by a factor of B₁/B₂
 B₂ ≤ B₁
 B₂ ≤ B₁

Testing for Lorentz Invariance Violation

(using GRB was first suggested by Amelino-Camelia et al. 1998)

> Why GRBs? Very bright & short transient events, at cosmological distances, emit high-energy γ-rays (D. Pile, Nature Photonics, 2010)

varmin

Testing for Lorentz Invariance Violation

- GRB 090510 is much better than the rest (short, hard, very fine time structure)
 Abdo+ 2009, Nature, 462, 331: 1st direct
 - time-of-flight limit beyond Plank scale on linear (n = 1) energy dispersion:

$$v_{\rm ph} / c \approx 1 \pm \frac{1}{2} (1+n) \Big(E_{\rm ph} / E_{\rm QG,n} \Big)$$

(robust, conservative, 2 independent methods)

- Vasileiou+ 2013: 3 different methods, 4 GRBs (090510 is still the best by far), the limits improved by factors of a few
- Vasileiou+ 2015, Nature Phys., 11, 344: stochastic LIV – motivation: space-time foam (1st Planck-scale limit of its kind)

