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1

A more specific experiment to test the distinction between gravitational mass 𝑚𝑚𝑔𝑔 and
inertial mass 𝑚𝑚𝑖𝑖 goes back to Isaac Newton (~1680) who used pendulums.

The equivalence principle in classical mechanics might be traced back to John
Philoponus (John of Alexandria 490~570 AD), who first observed that two balls of different
masses fall at the same rate.

Only much later did Simon Stevin (~1586 using the Delft Church tower) and Galileo
Galilei (~1610 using inclined planes) redo the experiments.

The equivalence principle & quantum mechanics
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The equivalence principle & quantum mechanics

𝐹𝐹 = 𝑚𝑚𝑖𝑖𝑎𝑎

𝐹𝐹 = 𝑚𝑚𝑔𝑔𝑔𝑔
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According to Newton’s 2nd Law:

According to universal gravity:

𝑀𝑀 = 𝑚𝑚𝑖𝑖𝐿𝐿�̈�𝜃

𝑀𝑀 = 𝑚𝑚𝑔𝑔𝑔𝑔𝜃𝜃

According to Newton’s 2nd Law:

According to universal gravity:

𝑚𝑚1𝑔𝑔

𝑚𝑚1𝑖𝑖

𝑚𝑚2𝑔𝑔

𝑚𝑚2𝑖𝑖

𝑚𝑚𝑔𝑔

𝑚𝑚𝑖𝑖



H. Albers et al., EPJD (2020) (10−7 precision level)

G. Rosi et al., NC (2017) (10−9 precision level)

Classical experiments confirm the universality of free fall at the 10−14
precision level (P. Touboul et al., PRL (2017))

P. Asenbaum et al., PRL (2020) (10−12 precision level)

Quantum experiments confirm the universality of free fall at:

1 The equivalence principle & quantum mechanics



the Schrödinger equation with a gravitational potential reads:

Because

1 The equivalence principle & quantum mechanics

−
ℏ2

2𝑚𝑚𝑖𝑖
∇2𝜓𝜓 + 𝑚𝑚𝑔𝑔𝑉𝑉 𝑟𝑟 𝜓𝜓 = 𝑖𝑖ℏ𝜕𝜕𝑡𝑡𝜓𝜓

Quantum mechanics does usually not display an isolated ratio:
𝑚𝑚𝑔𝑔

𝑚𝑚𝑖𝑖



COW experiment

DetectorParticle

Δ𝜙𝜙 = −𝑚𝑚𝑖𝑖𝑚𝑚𝑔𝑔
𝑔𝑔𝑧𝑧𝜆𝜆𝐿𝐿
2𝜋𝜋ℏ2

𝐿𝐿

𝑧𝑧

R. Colella, A.W. Overhauser and S.A. Werner, PRL (1975)

2 Two famous experiments with cold neutrons

𝜆𝜆



Q-bounce experiment

Particle

𝐸𝐸𝑛𝑛 ≈ −
𝑚𝑚𝑔𝑔
2

𝑚𝑚𝑖𝑖

9𝜋𝜋2ℏ2𝑔𝑔2

8
𝑛𝑛 −

1
4

2
1
3

𝑛𝑛 = 1𝑛𝑛 = 2𝑛𝑛 = 3

2 Two famous experiments with cold neutrons

R.V.V. Nesvizhevsky et al., PRD (2003)



2 Two famous experiments with cold neutrons

Both results, however, were limited to the linear approximation of the gravitational potential:

… and did not fully exploit the spatial extension of the wavefunction:

It seems then that, because of the form of the Schrödinger equation

−
ℏ2

2𝑚𝑚𝑖𝑖
∇2𝜓𝜓 + 𝑚𝑚𝑔𝑔𝑉𝑉 𝑟𝑟 𝜓𝜓 = 𝑖𝑖ℏ𝜕𝜕𝑡𝑡𝜓𝜓,

the dynamics of a quantum particle cannot involve the ratio
𝑚𝑚𝑔𝑔

𝑚𝑚𝑖𝑖

𝑚𝑚𝑔𝑔𝑉𝑉 𝑟𝑟 = −𝑚𝑚𝑔𝑔
𝐺𝐺𝑀𝑀
𝑟𝑟

= −𝑚𝑚𝑔𝑔
𝐺𝐺𝑀𝑀

𝑅𝑅𝐸𝐸 + 𝑧𝑧
≅ 𝑚𝑚𝑔𝑔

𝐺𝐺𝑀𝑀
𝑅𝑅𝐸𝐸2

𝑧𝑧



𝜁𝜁 = 1
2𝑅𝑅𝐸𝐸 − 𝑧𝑧

The gravitational potential in the Schrödinger 
equation in the non-inertial frame on the ground is:

𝑴𝑴

Particle
𝑥𝑥

𝑧𝑧

𝑅𝑅E

3

𝑚𝑚𝑔𝑔𝑉𝑉(𝑟𝑟) = 1
2𝑚𝑚𝑔𝑔

𝐺𝐺𝑀𝑀
𝑅𝑅𝐸𝐸3

𝑥𝑥2 + 𝑦𝑦2 − 2𝜁𝜁2

I

Three ways of exploiting gravitational tidal forces



The gravitational potential in the Schrödinger 
equation in the non-inertial frame on the ground is:

𝑴𝑴

Particle
𝑥𝑥

𝑧𝑧

𝑅𝑅EQuantized energy along the 𝑥𝑥- and 𝑦𝑦-axes:

𝐸𝐸𝑛𝑛𝑥𝑥, 𝑛𝑛𝑦𝑦 = ℏ𝜔𝜔
𝑚𝑚𝑔𝑔

𝑚𝑚𝑖𝑖
𝑛𝑛𝑥𝑥 + 𝑛𝑛𝑦𝑦 + 1

3

𝑚𝑚𝑔𝑔𝑉𝑉(𝑟𝑟) = 1
2𝑚𝑚𝑔𝑔

𝐺𝐺𝑀𝑀
𝑅𝑅𝐸𝐸3

𝑥𝑥2 + 𝑦𝑦2 − 2𝜁𝜁2

Simple harmonic oscillator potentials along 𝑥𝑥 & 𝑦𝑦.

I

Three ways of exploiting gravitational tidal forces



𝜓𝜓 𝜁𝜁 ∼ 𝑒𝑒𝜋𝜋𝜂𝜂Γ 1
2 − 𝑖𝑖𝜂𝜂 𝒟𝒟

𝑖𝑖𝜂𝜂−12
𝑒𝑒
3𝜋𝜋𝑖𝑖
4 2

3
4𝜁𝜁

𝑚𝑚𝑖𝑖𝑚𝑚𝑔𝑔𝑔𝑔
ℏ2𝑅𝑅𝐸𝐸

1
4

The gravitational potential in the Schrödinger 
equation in the non-inertial frame on the ground is:

𝑴𝑴

Particle
𝑥𝑥

𝑧𝑧

𝑅𝑅EInverted harmonic oscillator potential along 𝑧𝑧.

𝜂𝜂 =
𝐸𝐸
ℏ

𝑚𝑚𝑖𝑖

𝑚𝑚𝑔𝑔

𝑅𝑅𝐸𝐸
2𝑔𝑔

3

𝑚𝑚𝑔𝑔𝑉𝑉(𝑟𝑟) = 1
2𝑚𝑚𝑔𝑔

𝐺𝐺𝑀𝑀
𝑅𝑅𝐸𝐸3

𝑥𝑥2 + 𝑦𝑦2 − 2𝜁𝜁2
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The gravitational potential in the Schrödinger 
equation in the non-inertial frame on the ground is:

𝑴𝑴

Particle
𝑥𝑥

𝑧𝑧

𝑅𝑅EInverted harmonic oscillator potential along 𝑧𝑧.

𝐸𝐸𝑛𝑛𝜁𝜁 ≈ −
𝑚𝑚𝑔𝑔
2

𝑚𝑚𝑖𝑖

9𝜋𝜋2ℏ2𝑔𝑔2

8
𝑛𝑛 −

1
4

2
1
3

3

𝑚𝑚𝑔𝑔𝑉𝑉(𝑟𝑟) = 1
2𝑚𝑚𝑔𝑔

𝐺𝐺𝑀𝑀
𝑅𝑅𝐸𝐸3

𝑥𝑥2 + 𝑦𝑦2 − 2𝜁𝜁2

Quantized energy along the 𝑧𝑧 axis:

I

Three ways of exploiting gravitational tidal forces



𝑴𝑴
𝑅𝑅E

Moving 
boundariesParticle

The gravitational potential in the Schrödinger 
equation in the non-inertial frame on the ground is:

Inverted harmonic oscillator potential along 𝑧𝑧.

𝐸𝐸𝑛𝑛𝜁𝜁 =
𝑛𝑛2 𝑠𝑠 − 1 2𝜋𝜋2ℏ2

8𝑚𝑚𝑖𝑖𝑧𝑧0
𝑒𝑒
−

8𝑚𝑚𝑔𝑔
𝑚𝑚𝑖𝑖

𝜔𝜔𝑡𝑡

𝑧𝑧0

𝑧𝑧1

3

𝑚𝑚𝑔𝑔𝑉𝑉(𝑟𝑟) = 1
2𝑚𝑚𝑔𝑔

𝐺𝐺𝑀𝑀
𝑅𝑅𝐸𝐸3

𝑥𝑥2 + 𝑦𝑦2 − 2𝜁𝜁2

II

Three ways of exploiting gravitational tidal forces



𝑴𝑴
𝑅𝑅E

Freely-falling 
laboratory

Particle

ZARM Drop tower
Bremen (Germany)

140 m



𝑴𝑴

𝑚𝑚𝑉𝑉(𝑟𝑟) =
𝐺𝐺𝑀𝑀𝑚𝑚
2𝑟𝑟3(𝜏𝜏)

𝑥𝑥2 + 𝑦𝑦2 − 2𝑧𝑧2

𝑅𝑅E

Freely-falling 
laboratory

The gravitational potential in the Schrödinger 
equation in the inertial frame is:

3

Time-dependent simple harmonic oscillators.

Particle

III

Three ways of exploiting gravitational tidal forces



𝑴𝑴

𝑚𝑚𝑉𝑉(𝑟𝑟) =
𝐺𝐺𝑀𝑀𝑚𝑚
2𝑟𝑟3(𝜏𝜏)

𝑥𝑥2 + 𝑦𝑦2 − 2𝑧𝑧2

𝑅𝑅E

Freely-falling 
laboratory

The gravitational potential in the Schrödinger 
equation in the inertial frame is:

𝑟𝑟3 𝜏𝜏 =
9
2
𝐺𝐺𝑀𝑀

2𝑟𝑟03

9𝐺𝐺𝑀𝑀
− 𝜏𝜏

2

3

Particle

III
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𝑴𝑴

𝑚𝑚𝑉𝑉(𝑟𝑟) =
𝐺𝐺𝑀𝑀𝑚𝑚
2𝑟𝑟3(𝜏𝜏)

𝑥𝑥2 + 𝑦𝑦2 − 2𝑧𝑧2

𝑅𝑅E

Freely-falling 
laboratory

The gravitational potential in the Schrödinger 
equation in the inertial frame is:

Particle

𝑛𝑛 𝐻𝐻 𝑛𝑛 =
ℏ
2𝑡𝑡0

𝑛𝑛 + 1
2 𝑓𝑓

𝑡𝑡0
𝑡𝑡

3

𝑡𝑡0 =
2𝑟𝑟03

9𝐺𝐺𝑀𝑀
. 𝑡𝑡 = 𝑡𝑡0 − 𝜏𝜏.

III
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𝑴𝑴

𝑚𝑚𝑉𝑉(𝑟𝑟) =
𝐺𝐺𝑀𝑀𝑚𝑚
2𝑟𝑟3(𝜏𝜏)

𝑥𝑥2 + 𝑦𝑦2 − 2𝑧𝑧2

𝑅𝑅E

Freely-falling 
laboratory

The gravitational potential in the Schrödinger 
equation in the inertial frame is:

𝑤𝑤 = 𝑥𝑥 2 − 𝑥𝑥2
Consider the width of the wave packet:

3

𝑡𝑡0 =
2𝑟𝑟03

9𝐺𝐺𝑀𝑀
. 𝑡𝑡 = 𝑡𝑡0 − 𝜏𝜏.

Particle

III
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𝑴𝑴

𝑚𝑚𝑉𝑉(𝑟𝑟) =
𝐺𝐺𝑀𝑀𝑚𝑚
2𝑟𝑟3(𝜏𝜏)

𝑥𝑥2 + 𝑦𝑦2 − 2𝑧𝑧2

𝑅𝑅E

Freely-falling 
laboratory

The gravitational potential in the Schrödinger 
equation in the inertial frame is:

d𝑤𝑤
𝑤𝑤 d𝑡𝑡

=
12
𝑡𝑡
ℎ
𝑡𝑡0
𝑡𝑡

3

𝑡𝑡0 =
2𝑟𝑟03

9𝐺𝐺𝑀𝑀
. 𝑡𝑡 = 𝑡𝑡0 − 𝜏𝜏.

Particle

III

Three ways of exploiting gravitational tidal forces



Non-inertial frame (along 𝑥𝑥 and 𝑦𝑦) 𝐸𝐸𝑛𝑛𝑥𝑥, 𝑛𝑛𝑦𝑦 = ℏ𝜔𝜔
𝑚𝑚𝑔𝑔

𝑚𝑚𝑖𝑖
𝑛𝑛𝑥𝑥 + 𝑛𝑛𝑦𝑦 + 1

Non-inertial frame (along 𝑧𝑧)

Non-inertial frame (moving boundaries)

Inertial frame 𝑛𝑛 𝐻𝐻 𝑛𝑛 =
ℏ
2𝑡𝑡0

𝑛𝑛 + 1
2 𝑓𝑓

𝑡𝑡0
𝑡𝑡

d𝑤𝑤
𝑤𝑤 d𝑡𝑡

=
12
𝑡𝑡

ℎ
𝑡𝑡0
𝑡𝑡(along 𝑥𝑥 and 𝑦𝑦 )

𝜓𝜓 𝜁𝜁 ∼ 𝑒𝑒𝜋𝜋𝜂𝜂Γ 1
2 − 𝑖𝑖𝜂𝜂 𝒟𝒟

𝑖𝑖𝜂𝜂−12
𝑒𝑒
3𝜋𝜋𝑖𝑖
4 2

3
4𝜁𝜁

𝑚𝑚𝑖𝑖𝑚𝑚𝑔𝑔𝑔𝑔
ℏ2𝑅𝑅𝐸𝐸

1
4

𝐸𝐸𝑛𝑛𝜁𝜁 =
𝑛𝑛2 𝑠𝑠 − 1 2𝜋𝜋2ℏ2

8𝑚𝑚𝑖𝑖𝑧𝑧0
𝑒𝑒
−

8𝑚𝑚𝑔𝑔
𝑚𝑚𝑖𝑖

𝜔𝜔𝑡𝑡

4 The remarkable mass-independence 𝑚𝑚𝑔𝑔 = 𝑚𝑚𝑖𝑖



The mass-independence is due to the combined spatial extension of the 
wavefunction and the gravitational tidal forces!

4 The remarkable mass-independence 𝑚𝑚𝑔𝑔 = 𝑚𝑚𝑖𝑖



by using the ansatz: 𝜑𝜑 = 𝑒𝑒−𝑖𝑖
𝑚𝑚𝑖𝑖𝑐𝑐2𝑡𝑡
ℏ 𝜓𝜓.

𝑔𝑔00

𝑐𝑐2
𝜕𝜕𝑡𝑡2𝜓𝜓 + 𝑔𝑔𝑖𝑖𝑖𝑖𝜕𝜕𝑖𝑖𝑖𝑖𝜓𝜓 −

2𝑚𝑚𝑖𝑖𝑔𝑔00

ℏ
𝜕𝜕𝑡𝑡𝜓𝜓 − 𝑔𝑔00Γ00𝑘𝑘 + 𝑔𝑔𝑖𝑖𝑖𝑖Γ𝑖𝑖𝑖𝑖𝑘𝑘 𝜕𝜕𝑘𝑘𝜓𝜓 −

𝑚𝑚𝑖𝑖
2𝑐𝑐2

ℏ2
𝑔𝑔00 + 1 𝜓𝜓 = 0

For a spherically symmetric and static metric, the equation becomes

There is only the inertial mass in this equation!

The Schrödinger equation with the gravitational 
potential is extracted from the Klein-Gordon

equation in curved spacetime 

5 What does general relativity say about this?

𝑔𝑔𝜇𝜇𝜇𝜇𝜕𝜕𝜇𝜇𝜕𝜕𝜇𝜇 − 𝑔𝑔𝜇𝜇𝜇𝜇Γ𝜇𝜇𝜇𝜇𝜆𝜆 𝜕𝜕𝜆𝜆 −
𝑚𝑚𝑖𝑖
2𝑐𝑐2

ℏ2
𝜑𝜑 = 0,



by using the ansatz: 𝜑𝜑 = 𝑒𝑒−𝑖𝑖
𝑚𝑚𝑖𝑖𝑐𝑐2𝑡𝑡
ℏ 𝜓𝜓.

The universality of gravity, as implemented in general relativity, seems to be due to the 
universality of quantum mechanics.

The Schrödinger equation with the gravitational 
potential is extracted from the Klein-Gordon

equation in curved spacetime 

5 What does general relativity say about this?

𝑔𝑔𝜇𝜇𝜇𝜇𝜕𝜕𝜇𝜇𝜕𝜕𝜇𝜇 − 𝑔𝑔𝜇𝜇𝜇𝜇Γ𝜇𝜇𝜇𝜇𝜆𝜆 𝜕𝜕𝜆𝜆 −
𝑚𝑚𝑖𝑖
2𝑐𝑐2

ℏ2
𝜑𝜑 = 0,



6 Experimental challenges

−
ℏ2

2𝑚𝑚𝑖𝑖
∇2𝜓𝜓 + 𝑚𝑚𝑔𝑔𝑉𝑉 𝑟𝑟 𝜓𝜓 +

4𝜋𝜋ℏ2𝑎𝑎𝑠𝑠
𝑚𝑚𝑖𝑖

𝜓𝜓 2𝜓𝜓 = 𝑖𝑖ℏ𝜕𝜕𝑡𝑡𝜓𝜓Use the Gross-Pitaevskii equation:

A Bose-Einstein condensate could be used instead of a single quantum particle!

For moving boundaries, at least 2 hours are required.

All three setups are doable. 
The major hindrance would be to maintain quantum coherence for long times:

For a freely-falling laboratory, times larger than 38 seconds are required.



7 Conclusion

Just as in classical mechanics, it is possible to devise setups for which a 
quantum phenomenon depends on the ratio 𝑚𝑚𝑔𝑔

𝑚𝑚𝑖𝑖
in an isolated form.

Mass-independent behavior could be witnessed in quantum systems 
inside a gravitational field whenever the inertial mass is identical to the 
gravitational mass of the system.

These results provide, therefore, a novel way for testing the equivalence
between the two concepts of mass.



Many thanks for your attention!
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