qBOUNCE: Ultra-cold neutrons bound by Earth’s gravity field, a tabletop search for hypothetical gravity-like interactions

Jakob Micko
Institut Laue-Langevin
Atominstitut TU Wien
The Universe

Planck Data 2018

DM: 26.5%
M: 4.9%
DE: 68.6%

F = 10^{-36}
Neutrons in gravitational field

\[i\hbar \partial_t \psi = -\frac{\hbar^2}{2m_i} \partial_z^2 \psi + m_g g z \psi \]

• No charge

• Small polarizability
 - Rb in 1µm distance of surface: 0.6 peV
 - n in 1µm distance of surface: 10^{-18} peV

• Mass interacts with Gravity
 Modifications to Gravity

- No complete Quantum Theory of Gravity \Rightarrow Effective Field Theory
- Theories with $3+n$ space dimensions $\Rightarrow V(r) \sim \frac{1}{r^{1+n}}$
- Additional Yukawa like Potential $\Rightarrow V(r) \sim \frac{\alpha e^{-\frac{r}{\lambda}}}{r}$
- n in gravity field is in μm range
Neutrons

- Thermal neutrons 25 meV
- (ultra) (very) cold neutrons <25 meV
- Fermi (pseudo) potential: coherent scattering on nuclei in matter => Effective potential for neutron wavefunction $E_F \sim 100$ neV
- Matter can be used to store ultra-cold neutrons
Fermi potentials

• critical velocity: reflection under all angles of incidence
 • $E_F \approx 100 \text{ neV}$
 • $m_N g \approx 100 \text{ neV/m}$
 • $\mu_n \approx 60 \text{ neV/T}$

<table>
<thead>
<tr>
<th>Substance</th>
<th>E_F (neV)</th>
<th>v_c [m/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{58}Ni</td>
<td>335</td>
<td>8.00</td>
</tr>
<tr>
<td>Ni</td>
<td>252</td>
<td>6.9</td>
</tr>
<tr>
<td>Be</td>
<td>252</td>
<td>6.9</td>
</tr>
<tr>
<td>C (diamond)</td>
<td>305</td>
<td>7.74</td>
</tr>
<tr>
<td>C (graphite)</td>
<td>175</td>
<td>5.8</td>
</tr>
<tr>
<td>Cu</td>
<td>165</td>
<td>5.6</td>
</tr>
<tr>
<td>Stainless Steel</td>
<td>\sim188</td>
<td>\sim6</td>
</tr>
<tr>
<td>Al</td>
<td>54.1</td>
<td>3.22</td>
</tr>
<tr>
<td>V</td>
<td>-8.34</td>
<td>-</td>
</tr>
<tr>
<td>Ti</td>
<td>-49.7</td>
<td>-</td>
</tr>
</tbody>
</table>

PF2 @ ILL

https://www.ill.eu/users/instruments/instruments-list/pf2/description/ultracold-neutron-facility

Tobias JENKE

Public Talk of 103rd Scientific Council of the Institut Laue-Langevin
06/11/2020
Neutrons on a mirror

- Airy functions \(\text{Ai} \left(\frac{z}{z_0} - \frac{E}{mgz_0} \right) \)

- \(z_0 = \frac{3 \sqrt{\frac{\hbar^2}{2m^2g}}}{} \approx 5.87 \mu m \)

- \(mgz_0 \approx 0.60183 \pm 4 \cdot 10^{-5} \text{peV} \)

- \(E_n = -mgz_0 \text{AiZero}(n) \)

- \(f \leq 1 \text{kHz} \sim 4 \text{ peV} \)
Time evolution of states

M. Thalhammer
Ramsey’s Method with qBounce

- UCNs enter from the left
- Neutron detector to the right
- Total length: 0.95 m
Ramsey’s Method with qBounce

- Neutron mirrors, five different sections
- Bound states in gravitational potential
- Oscillations drive transitions

<table>
<thead>
<tr>
<th>Ψ</th>
<th>Ψ</th>
<th>Ψ</th>
<th>Ψ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>∞</td>
<td>6</td>
<td>1</td>
</tr>
</tbody>
</table>
Ramsey’s Method with qBounce

- II & IV induce transitions
- Free propagation in III
- Oscillation frequency determines final state
State selection

- Rough glass plates
- Scatter high energy states
- Height ≈ 25 µm above mirror
- End of I: \(|\psi>| = |1>\)

- End of II: \(|\psi>| = 50\% |1> + 50\% |6>\)
- III: \(|\psi>| = \frac{1}{\sqrt{2}} (e^{-i\frac{E_1}{\hbar} t} |1> + e^{-i\frac{E_6}{\hbar} t} |6>)\)
- IV: \(|\psi>| = |6>\)
- Transmission is measured
Transitions

\[i\hbar \partial_t \psi = -\frac{\hbar^2}{2m} \partial_z^2 \psi + mgz\psi + V_0 \Theta \left(-z + a \sin(\omega t + \varphi) \right) \psi \]

• Experimental parameters:
 - Vibration strength \(a\omega_{II}, a\omega_{IV} \)
 - Vibration frequency \(f_{II}, f_{IV} \)
 - Relative phase \(\varphi_{II-IV} \)

• Systematic effects:
 - steps between mirrors - phase offset
 - frequency offset - tilt of mirrors
New Interactions

• Model predicts interaction (with screening)
• Energy shift of a state can be calculated to first order:
 \[\delta E_n^{(1)} = \langle n | \hat{V} | n \rangle \]
• Difference of energies between two states is measured:
 \[\delta E_{nm}^{(1)} = \delta E_n^{(1)} - \delta E_m^{(1)} \]
• Comparison with theoretical expectation leads to exclusion or discovery
Symmetron Dark Energy?

\[i\hbar \partial_t \psi = -\frac{\hbar^2}{2m_i} \partial_z^2 \psi + \left(m_g g z + V_{DE}(z) + V_{DM}(z) \right) \psi \]

\[V_{\text{eff}} \sim \frac{\lambda}{4} \phi^4 + \left(\frac{\rho}{2M^2} - \frac{\mu^2}{2} \right) \phi^2 + \mu^4 \left(\frac{1}{4\lambda} + \frac{1}{16\pi^2} \right) \]

\[V_{DE} = \frac{m^2 c^2}{2M^2} \phi^2 \]

https://doi.org/10.1038/s41567-018-0205-x

\[\nu_{13} = 464 \pm 1.3 \text{ Hz}, \nu_{14} = 649.8 \pm 1.8 \text{ Hz} \]
The Experiment
Velocity selection

![Diagram of velocity selection setup]

- Mirror
- Slit aperture
- Absorber
- d, h_1, h_2, g, z, x, n

Graph

- ρ vs. v_x [m/s]
- Preliminary data

Equation

- Velocity selection

Notes

- 06/07/2021
- Jakob Micko
Finding the transition $|1\rangle \rightarrow |6\rangle$

- Highest contrast at $\pi/2$-flip (spoiled by velocity)
Finding the transition $|1>\rightarrow|6>$

- Highest contrast at $\frac{\pi}{2}$-flip" (spoiled by velocity)
Finding the transition $|1\rangle \rightarrow |6\rangle$

- Measure transition around $f_{1\rightarrow 6} \approx 972$ Hz to find true transition frequency
- Keep vibration strength constant
- Avoid steps
- For highest sensitivity use highest slope
|1⟩→|6⟩ 11.8-28.9.2020

Preliminary

$\tilde{f}_{16} \approx 972.68 \pm 0.16 \text{ Hz}$
$|1\rangle \rightarrow |3\rangle$ 11.8-28.9.2020

$P_{13} \approx 463.11 \pm 0.26$ Hz

Preliminary
2021: Jan & May (current) cycles

Jan. 2021 4–14 [m/s]

$f [\text{Hz}]: 972.89 \pm 0.20$

Drop: $42 \pm 6\%$

Jan. 2021 4–9.5 [m/s]

972.76 ± 0.11

$69 \pm 5\%$

May 2021 4–11 [m/s]

972.77 ± 0.14

44%
Summary

- Measured $g = 9.812 \pm 0.001 \text{ m/s}^2$, $\Delta g/g = 1.05 \cdot 10^{-4} \text{ m/s}^2$ with transition $|1\rangle \rightarrow |6\rangle$
- Investigated systematic effects (in progress)
- Improved stability of the experiment
Outlook

• Currently: Measuring transition $|1 \rightarrow |6 >$ with a magnetic field to investigate Torsion.
• Later this year: (classical) measurement of g at PF2
• Testing the WEP with $q\text{BOUNCE}$
• Extend the capabilities to include neutron storage
Thank you

Collaboration between TU Wien and the ILL

- **qBOUNCE:**
 - Atominstitut:
 - Prof. Hartmut Abele
 - Post Doc: R.I.P Sedmik
 - PhD: Joachim Bosina
 - ILL:
 - PF2 Responsible: T. Jenke
 - PF2 Co-Responsible: S. Roccia
 - Technician: T. Brenner

- **Students**
 - Carina Killian
 - Andrej Brandalik
 - Veronika Kraus
 - Richard Bergmayr
 - Hippolyte Bartosz