Non-unitarity problem in quantum gravity corrections to quantum field theory with Born-Oppenheimer approximation

postprint: https://arxiv.org/abs/1912.09945v4

Authors: F. Di Gioia1, G. Maniccia1,2, G. Montani1,3, J. Niedda1
Speaker: G. Maniccia, giulia.maniccia@uniroma1.it

1Physics Department, “La Sapienza” University of Rome, 00185 Roma, Italy
2INFN Section of Rome, Roma, Italy
3ENEA, C.R. Frascati, 00044 Frascati (Roma), Italy

16th Marcel Grossmann meeting, July 2021
Table of Contents

1. The problem of time and WKB expansion of the gravity-matter system

2. New proposal for the non-unitarity problem

3. Applications in cosmology

4. Incoherent dust and reference frame fixing
Table of Contents

1. The problem of time and WKB expansion of the gravity-matter system
2. New proposal for the non-unitarity problem
3. Applications in cosmology
4. Incoherent dust and reference frame fixing
The problem of time in quantum gravity

Canonical quantization approach to gravity with ADM formalism:

Universe wave function: \(\Psi = \Psi(\{h_{ij}\}, \phi_a) \)

\(h_{ij} \) = equivalence class of 3-geometries on \(\Sigma \)

\(\phi_a \) = matter fields

The dynamics of the system is encoded in the Wheeler-deWitt equation:

\[
H \Psi = \left(-\frac{2\hbar^2 \kappa}{\sqrt{h}} \nabla^2_g - \sqrt{h} R(3) \right) \Psi + \left(-\frac{\hbar^2}{2\sqrt{h}} \nabla^2_m + u(h_{ij}, \phi_a) \right) \Psi = 0
\]

Applying the canonical quantization scheme: \(\hat{H} \Psi = i\hbar \frac{\partial}{\partial t} \Psi = 0 \)

→ the Universe wave function does not evolve in time

→ Definition of a relational time
The Wentzel-Kramer-Brillouin expansion

WKB method

\[\Psi(c, q) = e^{iS/\hbar} \]

Perturbative expansion in parameter \(K \):

\[S = \sum_{n=0}^{\infty} K^n S_n \]

Decomposition \(S_n = \sigma_n(c) + \eta_n(c, q) \) into a semiclassical part for the background, and a part for the quantum subsystem.

Applied to the WDW equation:

\[H \Psi = \left(-K \nabla_c^2 + U_c + H_q \right) \Psi = 0 \]

→ identification of a semiclassical background, which can be used to define the time evolution of the quantum subsystem.

What is the dynamics that emerges from expansion?
WKB-expanded gravity-matter systems

 Expansion in \hbar: only up to $O(\hbar)$, where a Schrödinger eq. for matter fields is found with suitable time.

 Expansion to $O(\hbar^2)$:
 \[
 i\hbar \frac{\partial \chi_2}{\partial \tau} = H_q \chi_2 - \left(2i\hbar^2 \nabla_c \sigma_1 \cdot \nabla_c + \hbar^2 \nabla_c^2 \right) \chi_2
 \]

 \rightarrow non-unitary dynamics for matter fields

- **C. Kiefer, T.P. Singh (1991) 10.1103/PhysRevD.44.1067**

 Expansion in $M \propto m_{Pl}^2$ up to $O(1/M)$: non-unitary matter dynamics is found due to quantum gravity corrections.

 Redefinition of the quantum state χ to make H_{tot} Hermitian

 Procedure not valid in general due to $[H_{tot}, H_m] \neq 0$
Table of Contents

1. The problem of time and WKB expansion of the gravity-matter system
2. New proposal for the non-unitarity problem
3. Applications in cosmology
4. Incoherent dust and reference frame fixing
New proposal for the non-unitarity problem

WKB expansion: \(M \equiv \frac{1}{4c^2\kappa} = \frac{cm_p^2}{4\hbar} \)

→ expansion valid for particles with small \(m/\lambda_{Compton} \) ratio

Born-Oppenheimer separation: \(\Psi(h_a, \phi, y^\mu) = \psi(h_a)\chi(\phi, y^\mu; h_a) \)

where

\[\frac{\hat{H}\chi(\phi, y^\mu; h_a)}{\hat{H}\psi(h_a)} = O\left(\frac{1}{M}\right) \rightarrow \psi \text{ satisfies } \hat{H}^g\psi = 0, \hat{H}^g_i\psi = 0 \]

\[\frac{\delta}{\delta h_a}\chi(\phi, y^\mu; h_a) \simeq O\left(\frac{1}{M}\right) \]

Insertion of the kinematical action

First defined in K.V. Kuchař (1981), “Canonical Methods of quantization” as a way to naturally insert the system constraints into the action.
First used in gravity in 10.1016/S0550-3213(02)00301-2

\[S^{kin} = \int d^4x (p_\mu \partial_t y^\mu - N^\mu p_\mu) \]

is inserted as a fast component.
The kinematical action reinstates covariance under ADM foliation of the gravitational background (choice of \(N \) and \(N^i \)).
Additional contributions to the total constraints of the system (for \(\Psi \)):

\[H^{kin} = n^\mu p_\mu \]

\[H^{kin}_i = b^\mu_i p_\mu \]
Constraints of the model

Gravitational wave function:

\[
-\frac{\hbar^2}{2M} \left(\nabla^2_g + g \cdot \nabla_g \right) + MV \bigg] \psi = 0
\]

\[2i\hbar h_i \mathbf{D} \cdot \nabla_g \psi = 0\]

Total wave function:

\[
\left[-\frac{\hbar^2}{2M} \left(\nabla^2_g + g \cdot \nabla_g \right) + MV - \hbar^2 \nabla^2_m + U_m \right] \Psi = i\hbar n^\mu \frac{\delta}{\delta y^\mu} \Psi
\]

\[(2h_i \mathbf{D} \cdot \nabla_g - \partial_i \phi \cdot \nabla_m) \Psi = i\hbar b^\mu_i \frac{\delta}{\delta y^\mu} \Psi \]

Ansatz:

\[\Psi(h_a, \phi, y^\mu) = e^{\frac{i}{\hbar} \left(M\sigma_0 + \sigma_1 + \frac{1}{M} \sigma_2\right)} \cdot e^{\frac{i}{\hbar} \left(\eta_1 + \frac{1}{M} \eta_2\right)}\]
Unitary emerging dynamics for matter field

\[\mathcal{O}(M^1) \]: H-J equation for gravity sector:

\[
\frac{1}{2} \nabla_g \sigma_0 \cdot \nabla_g \sigma_0 + V = 0
\]

→ correct gravitational limit (Einstein equations).

- \[\mathcal{O}(M^0) \]: Schrödinger equation for matter sector

\[
i \hbar \frac{\delta}{\delta \tau} \chi_1 = \hat{H} \chi_1 = \int_{\Sigma} d^3x \left(N \mathcal{H}^m + N^i \mathcal{H}_i^m \right) \chi_1
\]

with relational time

\[
i \hbar \frac{\delta}{\delta \tau} \equiv i \hbar \int_{\Sigma} d^3x \left(N n^\mu + N^i b_i^\mu \right) \frac{\delta}{\delta y^\mu}
\]
Unitary emerging dynamics for matter field

$\mathcal{O}(M^{-1})$: matter dynamics with quantum gravity corrections

\[
i\hbar \frac{\delta}{\delta \tau} \chi = \hat{H} \chi + \int_{\Sigma} d^3 x \left[N \nabla g \sigma_0 \cdot (-i\hbar \nabla g) - 2N^k h_k D \cdot \left(\frac{-i\hbar \nabla g \chi}{\chi} \right) \right] \chi
\]

where $-2h_i D \cdot (-i\hbar \nabla g) \equiv -2h_{ij} D_k (-i\hbar \nabla g)^{kj}$

The correction terms are $\propto \nabla g \chi = \mathcal{O}(1/M)$ and unitary:

$\sigma_0 =$ real function, solution of H-J equation (action at $\mathcal{O}(M)$),

$-i\hbar \nabla g =$ conjugate momenta of the gravitational variables.
Table of Contents

1. The problem of time and WKB expansion of the gravity-matter system
2. New proposal for the non-unitarity problem
3. Applications in cosmology
4. Incoherent dust and reference frame fixing
Applications in cosmology

Expansion valid for matter fields whose associated particles are of small energy with respect to $m_{Pl} c^2$, and small corrections $\mathcal{O}(1/M)$.

Possible scenarios:

- de Sitter phase of the scalar field ϕ during inflation;
- effects on scalar perturbations during inflation;
- effects on the temperature of the Hawking radiation associated to a black hole.
Application to homogeneous inflaton field

Scalar field $\phi(t)$ in spatially flat FRW background: $R = \frac{6}{c^2} \left(\frac{\ddot{a}}{a} + \frac{\dot{a}^2}{a^2}\right)$, $\Lambda > 0$

Homogeneous case: $N(t) = \frac{\partial T}{\partial t}$ and $p_0 = i\hbar \frac{\delta}{\delta T}$

Integrating over a fiducial volume, the total Hamiltonian is

$$N(H_{grav} + H_\phi + H_{kin}) = \frac{1}{2V_0} \frac{N}{a^3} \pi_\phi^2 - \frac{2\pi Gc^2}{3V_0} \frac{N}{a} \pi_a^2 + \frac{V_0}{8\pi G} \Lambda N a^3 + N p_0$$

Using the time $d\tau = \frac{dT}{a^3}$, the dynamics for χ in Fourier space ($k = k_a, p = p_\phi$) is:

$$i\hbar \frac{\delta \tilde{\chi}}{\delta \tau} = -\hbar^2 \frac{\delta^2 \tilde{\chi}}{2 \delta \phi^2} + \hbar \frac{k (\tau)^{7/3}}{3 (3\Lambda)^{1/6}} \tilde{\chi} \rightarrow \tilde{\chi} = e^{\frac{-i}{2} \frac{\hbar p^2}{\tau} + i \frac{k (\tau)^{7/3}}{7 (3\Lambda)^{1/6}}}$$

\rightarrow solution for χ, valid for $-\frac{1}{M} < k < \frac{1}{M}$ (perturbative expansion)
Gaussian wave packet with small $\frac{\delta \psi}{\delta a}$
Table of Contents

1 The problem of time and WKB expansion of the gravity-matter system

2 New proposal for the non-unitarity problem

3 Applications in cosmology

4 Incoherent dust and reference frame fixing
Reference frame fixing as incoherent dust

K.V. Kuchař, C.G. Torre (1991) 10.1103/PhysRevD.43.419

\[S = S^{grav} + S^F \]

where \(S^F \) fixes the Gaussian reference frame \(g^{00} = 1, \ g^{0i} = 0 \) with Lagrange multipliers \(M, M_i \).

Parametrized \(S^F \) (recovers covariance):

\[
S^F = \int_{\Sigma} d^4x \left[-\frac{1}{2} M \sqrt{-g} (g^{\alpha\beta} \partial_\alpha T \partial_\beta T - 1) + M_i \sqrt{-g} (g^{\alpha\beta} \partial_\alpha T \partial_\beta X^i) \right]
\]

Source term → Reference system “materializes” as an incoherent dust

\[T^{\alpha\beta} = M \ U^\alpha \ U^\beta \quad \text{with} \quad U^\alpha = g^{\alpha\beta} \partial_\beta T \]

Dominant energy condition: \(M \geq 0 \)

Matter dynamics: Schrödinger eq. with time \(T \equiv t \) in Gaussian frame

→ the emergent fluid plays the role of clock for matter.
Applying the WKB expansion (in M) to this scenario, in the minisuperspace:

$$i\hbar \frac{\delta}{\delta t} \chi = H_m \chi + \nabla_g \sigma_0 \cdot (-i\hbar \nabla_g \chi)$$

quantum gravity corrections to the matter dynamics, which are isomorphic to the ones obtained with kinematical action!

In minisuperspace:

- consider ADM foliation such that $n^\mu = (1, \vec{0})$
- $y^\mu = (y^0, \vec{0})$ and $\partial_t y^\mu \rightarrow \dot{T} = \frac{\delta T}{\delta t} = N = 1$

so the two implementations are equivalent.
Conclusions and perspectives

Summarizing:

▶ WKB expansion + B-O separation: kinematical action can be used as a clock for the quantum subsystem, gives correct limits and unitary dynamics with gravitational corrections

▶ Small corrections but in principle detectable

Future perspectives:

▶ Application to scalar perturbations of the inflaton field

▶ Equivalence between kinematical action and (Gaussian) reference frame fixing procedure

Thank you for the attention!