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Introduction
Collisionless collapse of  self-gravitating systems results in 
nearly universal mass density profiles of  equilibrium halos 

Dubinski & Carlberg 1991
Navarro, Frenk & White 1996
Navarro et al. 2004
Springel et al. 2008
Boylan-Kolchin et al. 2009
Vogelsberger et al. 2014
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Fig. 2.— Density profiles of one of the most and one of the least massive halos in each series. In

each panel the low-mass system is represented by the leftmost curve. In the SCDM and CDMΛ

models radii are given in kpc (scale at the top) and densities are in units of 1010M!/kpc3. In all

other panels units are arbitrary. The density parameter, Ω0, and the value of the spectral index, n

is given in each panel. Solid lines are fits to the density profiles using eq. (1). The arrows indicate

the value of the gravitational softening. The virial radius of each system is in all cases two orders

of magnitude larger than the gravitational softening.
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Fig. 1.— Particle plots illustrating the time evolution of halos of different mass in an Ω0 = 1,

n = −1 cosmology. Box sizes of each column are chosen so as to include approximately the same

number of particles. At z0 = 0 the box size corresponds to about 6 × r200. Time runs from top to

bottom. Each snapshot is chosen so that M! increases by a factor of 4 between each row. Low mass

halos assemble earlier than their more massive counterparts. This is true for every cosmological

scenario in our series.
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Theoretical explanation of  this density profile shape 
and its universality have been more challenging.

Many authors have noted that 
v large particle number suggests the use of  statistical mechanics
v universality of  the equilibrium state may correspond to the most likely state 

à use maximum entropy

Introduction

Many attempts were made: 
Ogorodnikov 1957
Lynden-Bell 1967
Shu 1978
Madsen 1987
Stiavelli & Bertin 1987
Spergel & Hernquist 1992
Hjorth & Madsen 1991, 1993
Plastino & Plastino 1993
White & Narayan 1987

MacMillan et al. 2006
Kang & He 2011
Barnes & Williams 2012
Pontzen & Governato 2013
Beraldo e Silva et al. 2014, 2017
Levin & Pakter 2014
Chavanis et al. 2015
Wagner 2020
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Stat. mech. à energy distribution, n(E)
Density profiles are important, 
but in statistical mechanics we work with n(E), where E = kinetic + grav. potential

Why n(E)=f(E)g(E), and not the distribution function f(E)?
In an equilibrium collisionless system each particle has a fixed energy 
Differential energy distribution, n(E) gives the full description of  a system

A successful theory must reproduce n(E) of  equilibrium N-body halos

most bound
particles

least bound particles,
not fully virialized,
influenced by
nearby halos, infall, etc.

dimensionless energy

Figure 1. An x-z projection of particle positions for halo 232 (left) and 4090 (right), as examples of
an out of equilibrium, and equilibrium halos, respectively. In halo 232 multiple structures can be seen
merging or passing through one another. The color represents log of projected density of particles.

force softening) of 1h�1 kpc. The background cosmology is the concordance ⇤CDM model,
with ⌦m = 0.25, ⌦⇤ = 0.75, h = 0.73, and �8 = 0.9. The simulation follows the collisionless
evolution of 21603 ⇡ 1010 particles, each with a mass of 6.885⇥ 106h�1

M�. Gravitationally
bound systems are identified by a friends-of-friends algorithm with a linking length of 0.2
times the mean inter particle separation. While many halos are relatively isolated, some are
not. Some ‘halos’, especially at the high mass end, consist of multiple merging systems. The
merging halos have regions of large densities of particles far from the deepest potential, often
in the form of large substructures or a completely separate structure that is in the process of
merging or passing near or through the main structure. Figure 1 shows all the particles in
one such halo file. In these cases we took the dominant mass clump as our halo. For more
details on the Millennium-II Simulation and its data products, see [45].

To test DARKexp, we want to fit halos in a wide range of masses. In practice, very
high mass halos, & 1014M�, are rare, while very low mass systems, . 1011M�, have too
few particles for a meaningful fit. Our data set includes two 100-halo sets with disjointed
mass ranges, all at z = 0, with total masses ranging from 7.6 ⇥ 1011M� at the low mass
end to 4.5 ⇥ 1013M� at the high mass end. The 100 high mass systems were sampled with
a random subset of 1/10th of the particles in order to keep the file size manageable. The
particle masses for these halos were assumed to be 10⇥ larger to compensate in density and
potential calculations.

3 Determining Equilibrium

The virial radius of each halo, r200, is calculated as the radius within which the average
density is 200⇢crit, and ⇢crit = 3H2

0/(8⇡G), where H0 is present day Hubble constant. The
halo center is defined as the location of the particle with the deepest potential, ~rdeep. Virial
radii for our low mass halos range from 170 kpc to 280 kpc, and from 370 kpc to 580 kpc for
the high mass halos.

Our analysis requires an estimate of how relaxed a halo is, because DARKexp, being a
maximum entropy state, applies only to relaxed systems. Separating equilibrium systems has
been discussed in a number of papers [46, 47]. Three criteria are generally used: separation
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x-y projection of
one equilibrium
Millennium II halo
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Extended Secondary Infall Model 
(ESIM, based on Ryden & Gunn (1987)

-- mean-field model
-- spherically symmetric
-- radial forces only
-- 3D phase-space (1 spatial + 2 velocity)
-- radial, angular actions conserved

most bound
particles

least bound particles,
not fully virialized,
influenced by
nearby halos, infall, etc.

dimensionless energy

Density profiles are important, 
but in statistical mechanics we work with n(E), where E = kinetic + grav. potential

Why n(E)=f(E)g(E), and not the distribution function f(E)?
In an equilibrium collisionless system each particle has a fixed energy 
Differential energy distribution, n(E) gives the full description of  a system

We use a simplified collapse model  (N-body simulations have complex dynamics)

Stat. mech. à energy distribution, n(E)
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most bound
particles

least bound particles,
not fully virialized,
influenced by
nearby halos, infall, etc.

dimensionless energy

Density profiles are important, 
but in statistical mechanics we work with n(E), where E = kinetic + grav. potential

Why n(E)=f(E)g(E), and not the distribution function f(E)?
In an equilibrium collisionless system each particle has a fixed energy 
Differential energy distribution, n(E) gives the full description of  a system

n(E) of  our theoretical model, DARKexp

Stat. mech. à energy distribution, n(E)
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DARKexp fits 
equilibrium states of
N-body simulated halos 
and ESIM very well
(also density and 
velocity dispersion profiles)

most bound
particles

least bound particles,
not fully virialized,
influenced by
nearby halos, infall, etc.

dimensionless energy

Density profiles are important, 
but in statistical mechanics we work with n(E), where E = kinetic + grav. potential

Why n(E)=f(E)g(E), and not the distribution function f(E)?
In an equilibrium collisionless system each particle has a fixed energy 
Differential energy distribution, n(E) gives the full description of  a system

All 3: N-body sims,  ESIM simplified collapse,  DARKexp model

Stat. mech. à energy distribution, n(E)
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DARKexp entropy SD derived
Entropy is related to the # microstates corresponding to a given macrostate

n – occupation # of cells in energy space
N – total # of particles
g – degeneracy / cell size
j – energy level label 

fully captured by n(E)

To find the most likely state with a fixed total energy we define entropy:

SD should attain a maximum at equilibrium

want to
derive

its shape

normalization irrelevant

DARKexp

Figure 9. Upper left: Examples of DARKexp differential energy distributions. When plotted using
dimensionless (�0 � ✏), all DARKexp differential energy distributions have exactly the same shape in
the most bound energy range. The solid, long-dash and short-dash lines show DARKexp of �0 = 4, 3,
and 2, respectively. Upper right: Average N(✏) of all 144 equilibrium Millennium-II halos, not weighted
by the halo’ virial mass (blue curves). Dot-dash magenta curve represents particles within 4h�1 kpc
(i.e. 4 smoothing lengths) from the halo centers. The black curve is DARKexp. Lower panels:
Average N(✏) for halos with virial radii r200 < 280 kpc (left) and r200 > 370 kpc (right). In this case
each halo’s contribution was weighted by the inverse of its virial mass. Note that DARKexp fits the
simulation results very well. High mass halos follow DARKexp better at bound energies than do the
low mass halos, most likely because the resolution effects are less important in the former.

Lenz-Ising parameter,

Sising =
n�1X

i=1

�i�i+1, (5.2)

– 15 –
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Entropy is related to the # microstates corresponding to a given macrostate

n – occupation # of cells in energy space
N – total # of particles
g – degeneracy / cell size
j – energy level label 

fully captured by n(E)

To find the most likely state with a fixed total energy we define entropy:

SD should attain a maximum at equilibrium

SD should increase with time, as halo evolves

want to
derive

its shape

normalization irrelevant

DARKexp

DARKexp entropy SD derived
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DARKexp entropy SD increases with time

ESIM n(E) shape approaches that of  DARKexp

evolution of
one ESIM halo
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Entropy SD increases with time

Shape of  n(E)       
approaches DARKexp

many ESIM halos
with different
initial conditions
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Conclusions
DARKexp:

Derived using principles of  statistical mechanics
Derivation is straightforward

(with 1 conceptual difference from Maxwell-Boltzmann stats)
Energy distribution  n(E) has no shape parameters, 

only a truncation near unbound energies

Reproduces n(E), density & velocity dispersion profiles of  
N-body sims and simplified collapse of  ESIM halos

Entropy SD

increases monotonically during evolution 
of  ESIM halos and attains a maximum 
at equilibrium

à self-consistent theory

S D increases monotonically
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EXTRA SLIDES
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Individual Millennium-II halos fitted with DARKexp 

Figure 8. DARKexp fits to the differential energy distributions of selected high mass (left) and low
mass (right) halos, presented in the same order as in Figure 4. Top panels show halos that are fit
very well, middle panels contain fits of ‘intermediate’ quality, and bottom panels show ‘poor’ fits. The
virial mass and fitted �0,N are shown in each panel. Solid jagged (blue) lines show particle energy
distributions truncated at E = �(r200), while the smooth solid (red) curve shows the DARKexp fit.
Short-dash (gray) lines show N(E) of particles within r200, and long-dash (green) line shows that of
all particles in the corresponding halo file.
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Figure 8. DARKexp fits to the differential energy distributions of selected high mass (left) and low
mass (right) halos, presented in the same order as in Figure 4. Top panels show halos that are fit
very well, middle panels contain fits of ‘intermediate’ quality, and bottom panels show ‘poor’ fits. The
virial mass and fitted �0,N are shown in each panel. Solid jagged (blue) lines show particle energy
distributions truncated at E = �(r200), while the smooth solid (red) curve shows the DARKexp fit.
Short-dash (gray) lines show N(E) of particles within r200, and long-dash (green) line shows that of
all particles in the corresponding halo file.
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Figure 6. Fits to total velocity dispersion profiles. Both axes as in units of values at r�2. The halos
shown, and the extent of the horizontal axis are the same as in Figure 4.

by Poisson noise in the number of particles, but mainly by the substructure, and other density
perturbations within the halos. Second, the tightly bound end of the energy distribution, the
‘�1’ part of eq. (1.1), is an important aspect of the N(E) shape of the DARKexp model, but
which contains relatively few particles.

Figure 8 shows a few examples of DARKexp N(E) fits to selected Millennium-II halos.
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Figure 4. Fits to log of density, log[⇢(r)], and density slope, �(r), profiles for selected high mass
(left panels) and low mass (right panels) halos, presented in the same order as in Fig. 8. The halos
were chosen based on the quality of their N(E) fits (Section 5.1). The thick smooth (red) curves are
the best fit DARKexp; Millennium-II data are the (blue) jagged lines. The thin (magenta) curves are
DARKexp of �0 = 6, 5, 4, 3, 2 (higher �0 give rise to steeper central density slopes).

most Millennium-II halos.
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Figure 6. Fits to total velocity dispersion profiles. Both axes as in units of values at r�2. The halos
shown, and the extent of the horizontal axis are the same as in Figure 4.

by Poisson noise in the number of particles, but mainly by the substructure, and other density
perturbations within the halos. Second, the tightly bound end of the energy distribution, the
‘�1’ part of eq. (1.1), is an important aspect of the N(E) shape of the DARKexp model, but
which contains relatively few particles.

Figure 8 shows a few examples of DARKexp N(E) fits to selected Millennium-II halos.
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Figure 4. Fits to log of density, log[⇢(r)], and density slope, �(r), profiles for selected high mass
(left panels) and low mass (right panels) halos, presented in the same order as in Fig. 8. The halos
were chosen based on the quality of their N(E) fits (Section 5.1). The thick smooth (red) curves are
the best fit DARKexp; Millennium-II data are the (blue) jagged lines. The thin (magenta) curves are
DARKexp of �0 = 6, 5, 4, 3, 2 (higher �0 give rise to steeper central density slopes).

most Millennium-II halos.
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