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Introduction

Collisionless collapse of self-gravitating systems results in
nearly universal mass density profiles of equilibrium halos
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Introduction

Theoretical explanation of this density profile shape
and 1ts universality have been more challenging.

Many attempts were made:

Ogorodnikov 1957 MacMillan et al. 2006
Lynden-Bell 1967 Kang & He 2011

Shu 1978 Barnes & Williams 2012
Madsen 1987 Pontzen & Governato 2013
Stiavelli & Bertin 1987 Beraldo e Silva et al. 2014, 2017
Spergel & Hernquist 1992 Levin & Pakter 2014

Hjorth & Madsen 1991, 1993 Chavanis et al. 2015

Plastino & Plastino 1993 Wagner 2020

White & Narayan 1987

Many authors have noted that
% large particle number suggests the use of statistical mechanics
* universality of the equilibrium state may correspond to the most likely state

—> use maximum entropy



Stat. mech. = energy distribution, n(E)

Density profiles are important,
but in statistical mechanics we work with n(E), where E = kinetic + grav. potential

Why n(E)={(E)g(E), and not the distribution function f{E)?

In an equilibrium collisionless system each particle has a fixed energy
Differential energy distribution, n(E) gives the full description of a system

A successful theory must reproduce n(E) of equilibrium N-body halos
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Stat. mech. 2 energy distribution, n(E)

Density profiles are important,

but in statistical mechanics we work with n(E), where E = kinetic + grav. potential

Why n(E)={{E)g(E), and not the distribution function f{E)?

In an equilibrium collisionless system each particle has a fixed energy
Differential energy distribution, n(E) gives the full description of a system

We use a sstmplified collapse model (N-body simulations have complex dynamics)

10

T T T T I T T T T I T T T T I T T T T I T
ESIM idealized collapse
equilibrium halo
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Extended Secondary Infall Model
(ESIM, based on Ryden & Gunn (1987)

-- mean-field model

-- spherically symmetric

-- radial forces only

-- 3D phase-space (1 spatial + 2 velocity)
-- radial, angular actions conserved



Stat. mech. 2 energy distribution, n(E)

Density profiles are important,
but in statistical mechanics we work with n(E), where E = kinetic + grav. potential

Why n(E)={{E)g(E), and not the distribution function f{E)?

In an equilibrium collisionless system each particle has a fixed energy
Differential energy distribution, n(E) gives the full description of a system

n(E) of our theoretical model, DARKexp
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| DARKexp model
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Stat. mech. 2 energy distribution, n(E)

Density profiles are important,

but in statistical mechanics we work with n(E), where E = kinetic + grav. potential

Why n(E)={{E)g(E), and not the distribution function f{E)?

In an equilibrium collisionless system each particle has a fixed energy
Differential energy distribution, n(E) gives the full description of a system

All 3: N-body sims, ESIM simplified collapse, DARKexp model
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DARKexp model
ESIM idealized collapse

Millennium II N-body sims
(equilibrium halos)

least bound particles,
not fully virialized,

most bound influenced by
particles nearby halos, infall, etc.
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DARKexp fits

equilibrium states of
N-body simulated halos
and ESIM very well

(also density and

velocity dispersion profiles)



DARKexp entropy Sy derived

Entropy is related to the # microstates corresponding to a given macrostate

’ hJ. fully captured by

n — occupation # of cells in energy space
N — total # of particles

— degeneracy / cell size
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normalization |rrelevant

want to
derive
its shape

To find the most likely state with a fixed total energy we define entropy:
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DARKexp entropy Sy derived

Entropy is related to the # microstates corresponding to a given macrostate

’ hJ. fully captured by

n — occupation # of cells in energy space
N — total # of particles

— degeneracy / cell size
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normalization irrelevant

want to
derive
its shape

To find the most likely state with a fixed total energy we define entropy:
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SD should increase with time, as halo evolves NE)x €
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DARKexp entropy Sp increases with time
Sy==[In (he)+)dE ~ B /n(E) E dE

- - DARKexp
evolution of N

one ESIM halo .;, N ]
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ESIM n(E) shape approaches that of DARKexp
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Conclusions
DARKexp: SPASRANENS

| ESIM idealized collapse

- Millennium II N—body sims

Derived using principles of statistical mechanics o
Derivation 1s straightforward

(with 1 conceptual difference from Maxwell-Boltzmann stats)

log(N[e])
(o]

Energy distribution n(E) has no shape parameters,
only a truncation near unbound energies

N(e)= @ AEE) -

Reproduces n(E), density & velocity dispersion profilesof bt 1,010 001,
N-body sims and simplified collapse of ESIM halos :

Entropy So.

So=~[tn (rte) ) dE — B (e} € diE -

increases monotonically during evolution

» -

increases monotonically
of ESIM halos and attains a maximum
at equilibrium

= self-consistent theory
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EXTRA SLIDES



Individual Millennium-Il halos fitted with DARKexp
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