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An exact time-dependent solution of a black hole is found in a conformally invariant

gravity model on a warped Randall-Sundrum spacetime, by writing the metric gµν =

ω
4

n−2 g̃µν . Here g̃µν represents the ”un-physical” spacetime and ω the dilaton field, which

will be treated on equal footing as any renormalizable scalar field. It is remarkable
that the 5D and 4D effective field equations for the metric components and dilaton

fields can be written in general dimension n = 4, 5. The location of the horizon(s) are
determined by a quintic polynomial. This polynomial is related to the symmetry group

of the icosahedron, isomorphic with the Galois group A5. We applied the antipodal

mapping on the axially symmetric black hole spacetime and make some connection with
the information and firewall paradoxes. The dilaton field can be used to describe the

different notion the in-going and outside observers have of the Hawking radiation by using

different conformal gauge freedom. The disagreement about the interior of the black hole
is explained by the antipodal map of points on the horizon. The free parameters of the

solution can be chosen in such a way that ḡµν is singular-free and topologically regular,

even for ω → 0.
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1. Introduction

One of the greatest challenges of modern physics will be the construction of a

quantum-gravity model. In the vicinity of a horizon of a black hole and in the very

early universe, these quantum gravity effects will come into play. The quantum

features of a black hole were investigated, decades ago, by Hawking in his epic

work on radiation effects of a black hole1 by vacuum polarization. This radiation

would be thermal and would contain no information. The black hole will eventually

evaporate, and one could say that information is lost, because the anti-particles

will fall into the black hole. This would violate quantum mechanics (QM). Related

to this issue, is the holographic principle2, which states that the interior volume of

spacetime of a black hole containing the information of the in-going particles is dual

to the surface of the horizon. Could it be that the information is still at the horizon?

The idea was extended to the well-known Anti-de Sitter/Conformal Field Theory

(AdS/CFT) correspondence: is some way, the information must be present in the

Hawking radiation. This model relies heavily on string theory, but would solve

the information paradox, by introduction the notion of complementarity of the in-

and outside of the black hole. The in-going and out-going particles are entangled
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and the information of the in-going particle is also reflected back. However, this

viewpoint conflict causality3. The previously emitted Hawking radiation and the

corresponding in-going particles are independent systems and at the same time

indirect entangled. Another solution for the information paradox, which don’t rely

on string theory, is the introduction of a firewall4. The entanglement between the

in-going and out-going particles is broken by a high energetic shield. The freely

in-falling observer encounters high-energy particles at the horizon. This viewpoint

conflicts general relativity, i.e., violation of the equivalence principle. Free falling

observers, when falling through the horizon, perceive spacetime as Minkowski, so

will not notice the horizon at all. A fundamental issue which is omitted in all the

treatments as described above, is the time-dependency of the spacetime structure

near the horizon. The emitted Hawking particle will have a back-reaction effect on

the spacetime5,6. Could it be possible, that the topology of the black hole must be

revised? It is well know, that quantum field theory on a curved spacetime opens the

possibility that a field theory can have different vacuum states. It can have intrinsic

statistical features from a change in topology and not from from a priori statistical

description of the matter fields. A spacetime with a given local geometry admits

in principle, different possible global topologies. One can consider the modification

of the spacetime topology of the form M̂/Γ, where Γ is a discrete subgroup of

isometries of M7–10, without fixed points. M̂ is non-singular and is obtained from

its universal covering M by identifying points equivalent under Γ. A particular

interesting case is obtained, when Γ is the antipodal transformation on M

J : P (X)→ P̂ (X̂). (1)

where the light-cone of the antipode of P (X) intersects the light-cone of P (X) only

in two point (at the boundary of the spacetime). This is the so-called ”elliptic

interpretation”11 of spacetime, where antipodal points represents in fact the same

world-point or event. The future and past event horizon intersect each other as a

projected cylinder R1 × S1/Z2
a. At the intersection one then identifies antipodal

points. One must realize that the antipodal map is a boundary condition at the

horizon, only observable by the outside observer. On a black hole spacetime, the

inside is removed. So nothing can escape the interior, since there is no interior.

The field theories formulated on M and M̂ are globally different, while locally M
and M̂ are identically. The emitted radiation is only locally thermal. Antipodal

identification, however, destroys the thermal features in the Fock space construc-

tion. In the construction, one needs unitary evolution operators for the in-going

and out-going particles.5,12. In order to avoid wormhole constellations or demand-

ing ”an other universe” in the construction of the Penrose diagram, it is essential

that the asymptotic domain of M maps one-to-one onto the ordinary spacetime in

order to preserve the metric. In fact, one deals with one black hole. A consequence

aWe work here in polar coordinates, because the spinning black hole we will consider, has a
preferred spin axis. The antipodal identification is then (U, V, z, ϕ)→ (−U,−V,−z, π + ϕ).
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is that time-inversion take place in region II of the Penrose diagram, so interchange

of the creation and annihilation operators and entangling positive energy particles

at the horizon with positive energy antiparticles at the antipodes. So the antipo-

dal identification is not in conflict with the general CPT invariance of our world.

Further, for the outside observer, the thermodynamically mixed state is replaced

by a pure state. So the Hawking particles at opposite sides of the black hole are

entangled. The former representation that observers has no access to the inside of

the black hole is no longer valid. One arrives by this new geometrical description

at pure quantum states for the black hole. It will solve, moreover, the information

paradox and firewall problem as wellb. The gravitational back-reaction as proposed

by ’t Hooft13,14, suggests a cut-off of high momenta, which avoids the firewall. The

in-going particle has a back-reaction on the other particles, leading to an unitary S-

matrix. The gravitational interaction between the in-going and out-going particles

will be strong, because we are dealing here with a strongly curved spacetime near the

horizon. Using a ”cut-and-paste” procedure, one replaces the high-energy particles

(”hard”), i.e., mass or momentum of the order of the Planck mass, by low-energy

(”soft”) particles far away. These hard particles just caused the firewall problem.

Hard particles will also influence the local spacetime (to become non-Schwarzschild)

and causes the Shapiro effect. The interaction with the soft particles is described

by the Shapiro delay. Effectively, all hard particles are quantum clones of all soft

particles. By this ”firewall-transformation”, we look only at the soft particle clones.

They define the Hilbert space and leads to a unitary scattering matrix. The net

result is that the black hole is actually in a pure state, invalidating the entanglement

arguments in the firewall paradox. The entanglement issue can be reformulated by

considering the two regions I and II in the maximally extended Penrose diagram of

the black hole, as representing two ”hemispheres” of the same black hole. It turns

out that the antipodal identification keeps the wave functions pure6 and the central

r = 0 singularity has disappeared. This gravitational deformation will cause tran-

sitions from region I to II in the Penrose diagram. The fundamental construction

then consist of the exchange of the position operator with the momentum operator

of the in-going particles, which turn them into out-particles. Hereby, ’t Hooft ex-

pands the moment distributions and position variables in partial waves in (θ, ϕ)5.

So the Hawking particles emerging from I are entangled with the particles emerging

from II. An important new aspect is the way particles transmit the information they

carry across the horizon. In the new model, the Hawking particles emerging from

I are maximally entangled with the particles emerging from II. The particles form

a pure state, which solves the information paradox. In order to describe the more

realistic black holes, such as the axially symmetric Kerr black hole, it is not possible

to ignore the dynamics of the horizon. Moreover, one must incorporate gravitation

waves. There is another reason to consider axially symmetry. A spherical symmetric

bThe technical aspects in constructing the unitary S-matrix can be found in the literature, as
provided by the references.
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system cannot emit gravitation waves15. Astronomers conjecture that most of the

black holes in the center of galaxies are of the Kerr type. A linear approximation is,

of course, inadequate in high-curvature situations. In the linear approximation, the

waves don’t carry enough energy and momentum to affect their own propagation.

The notion of the ”classical” Hartle-Hawking vacuum thermal state, with a tem-

perature T ∼ 1
M ∼ κ and the luminosity dM

dt ∼ −
1
M2 must also be revised when the

mass reaches the order of the Planck mass. On the Kerr black hole spacetime no

analog of the Hartle-Hawking vacuum state exists. The Killing field ξµ generates

a bifurcate Killing horizon (ξµξµ = −1 at infinity) and possesses spacelike orbits

near infinity16. Another aspect of the huge curvature in the vicinity of the horizon,

will be the problem of constructing a renormalizable (and maintaining unitarity)

quantum gravity model of the Standard Model fields, which must be incorporated

in the Lagrangian. Up till now, no convincing theory of quantum gravity is avail-

able. Many attempts were made in order to make a renormalizable and unitary

quantum gravity model. One also can try to construct a renormalizable model, by

adding fourth order derivative terms of the curvature tensor (Euler-term). However,

one looses unitarity. Also the ”old” effective field theory (EFT) has its problems.

One ignores what is going on at high energy. In order to solve the anomalies one

encounters in calculating the effective action, one can apply the so-called conformal

dilaton gravity (CDG) model5,6,17. CDG is a promising route to tackle the prob-

lems arising in quantum gravity model, such as the loss of unitarity close to the

horizon. One assumes local conformal symmetry, which is spontaneously broken

(for example by a quartic self-coupling of the Higgs field). Changing the symmetry

of the action was also successful in the past, i.e., in the SM of particle physics. A

numerical investigation of a black hole solution of a non-vacuum CDG model, was

recently performed18. The key feature in CDG, is the splitting of the metric tensor

gµν = ω
4

n−2 g̃µν , with ω the dilaton field. Applying perturbation techniques (and

renormalization/dimensional regularization), in order to find the effective action

and its divergencies, one first integrate over ω (shifted to the complex contour),

considered as a conventional renormalizable scalar field and afterwards over g̃µν
and matter fields. The dilaton field is locally unobservable. It is fixed when we

choose the global spacetime and coordinate system. If one applies this principle

to a black hole spacetime, then the energy-momentum tensor of ω influences the

Hawking radiation. When g̃µν is flat, then the handling of the anomalies simplifies

considerably14. When g̃µν is non-flat, the problems are more deep-seated. It is well

known, that the antipodal transformation, or inversion, is part of the conformal

group19. So conformal invariant gravity models could fit very well the models of

antipodal mapping as described above. In this context, the modification of GRT

by an additional spacetime dimension could be an alternative compromise, because

Einstein gravity on the brane will be modified by the very embedding itself and
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opens up a possible new way to address the dark energy problem20c. These mod-

els can be applied to the standard Friedmann-Lemâıtre-Robertson-Walker (FLRW)

spacetime and the modification on the Friedmann equations can be investigated21.

Recently, Maldacena, et al.22, applies the RS model to two black hole spacetimes

and could construct a traversable macroscopic wormhole solution by adding only

a 5D U(1) gauge field (see also Maldacena23). However, an empty bulk would be

preferable. In stead, one can investigate the contribution of the projected 5D Weyl

tensor on the 4D brane. It carries information of the gravitational field outside the

brane. If one writes the 5D Einstein equation in CDG setting, it could be possible

that an effective theory can be constructed without an UV cutoff, because the fun-

damental scale M5 can be much less than the effective scale MPl due to the warp

factor. The physical scale is therefore not determined by MPl. In this manuscript

we will apply the antipodal map on a spinning black hole spacetime in conformal

dilaton gravity applied to a warped 5D spacetime.

2. Conformal Transformations and Antipodal Mapping.

2.1. The origin of the antipodal mapping

The antipodal map originates from the so-called ”elliptic” interpretation11. If one

considers the hyperboloid H,−t2+x2+y2+z2+w2 = R2, then the space-like sections

through the origin are ellipses and the time-like sections are hyperbola branches.

Since the de Sitter spacetime can be isometrically embedded as a hyperboloid in

R5, one can take R2 = − 3
Λ . If one suppresses the coordinates (z, w), we have the

R3 Minkowski metric. Lorentz transformations (LT’s) around the origin transforms

H into itself. Circles on H represent space at different epochs. The bottle-neck

parallel is a spatial geodesic, while the others are not. Further, the circumferences

contract from z = −∞ to z = 0 and then expand. A LT of R3 turns the bottle-neck

into an ellipse, cut out of H with an angle < 45o with the (x, y)-plane. See figure 1.

All the ellipses are equivalent space-like geodesics since each of them is transferred

by a suitable automorphism into the bottle-neck, which is one of them. One defines

the antipodal map

J : P (t, x, y)→ P̂ (−t,−x,−y), (2)

on H. The antipodicity is Lorentz invariant. When the angle approaches 45o, then

the ellipses degenerate into a couple of parallel generators (g1, g2) (null geodesics).

The other plane of 45o delivers the set (g3, g4). The sets (g1, g4) and (g2, g3) form,

for example, the light-cones at the points M and M̂ . If one moves upwards along t,

the inner angles of the light-cones decrease. Note that the light-cones at P and P̂

has no point in common and the antipodes are joined by a space-like geodesic. Now

Schrödinger proposed to identify P and P̂ with the same physical world-point or

cThere is another argument in favor of a (warped) 5D spacetime. It turns out, as we shall see,
that a surface in 4D can be immersed to 5D, like a Klein bottle.
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Fig. 1. Hyperboloid H representing the R3 spacetime of the compactified de Sitter universe R5

((z, w) suppressed). Right: the Penrose diagram. The antipodal points P and J(P ) are spacelike
separated. An observer moving in de Sitter spacetime cannot meet both P and J(P ). He cannot

receive a message from P, J(P ). Moreover, he cannot receive a message from P and send a message

to J(P ).

event. One half of H, containing no antipodal points, represents the ”whole world”.

Thereafter, Schrödinger argues in a clever way that the total potential of experiences

of any observer is complete and embraces the same events for any two observers,

whatever their world lines be. But there is a price we have to pay ford. The direction

of the arrow of time is lost (or the distinction between the ”fore-cone” and ”after-

cone” is lost). The allotment of past and future is undecidable. The elliptic model

is time-reversible. This can open perspective to the general CPT invariance of

our world. The real problems arise, when one considers thermodynamical systems,

as is the case for the Hawking effect in the vicinity of the horizon of a black hole.

Then the entropy comes into play. Note, quoting Schrödinger, ”the irreversible laws

of thermodynamics can only be based on the statistical microscopically reversible

systems on condition that statistical theory be autonomous in defining the arrow

of time. If any other law of nature determines this arrow, the statistical theory

collapses.”

In a pseudo-polar frame (χ, T, θ, ϕ) we can write the line element

ds2 = −R2dT 2 +R2 cosh2 T
[
dχ2 + sin2 χ(dθ2 + sin2 θdϕ2)

]
, (3)

where 0 < χ < 2π. The antipodal map becomes now

J : (T, χ, θ, ϕ)→ (−T, π + χ, π − θ, π + ϕ). (4)

We already mentioned that de Sitter can be embedded as a hyperboloid in 5D

dThis price is worth paying in the black hole situation, when the information paradox will be
solved by the antipodal map. The antipodal half is not time orientable. There is a breakdown of

the global distinction between past and future in the interior of the black hole.
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Minkowski. We then say that J : Xµ → −Xµ is an inversion e. There exist another

coordinate system (introduced by de Sitter himself) in which the line element is

written as

ds2 = −(1− ρ2

R2
)dT ′2 +

1

(1− ρ2

R2 )
dρ2 + ρ2(dθ′2 + sin2 θ′dϕ′2), (5)

where we have taken the velocity of the LT tanhT = t
y . This is the static de

Sitter and the spaces of constant time are all equivalent. There are singularities

for x = ±R (χ = ±90o), i.e., the points (M,M̂). However, as also observed by

Schrödinger, this static model is not adequate for applying the antipodal map. In

order to apply the antipodal map on a black hole spacetime in a more general

setting, one needs a time dependent spacetime.

2.2. The ”classical” Hawking effect and its problems

The famous result of Hawking states, that a black hole will radiate at ”sufficiently”

late times like a black body at a temperature

kT ∼ κ

2π
=

~c3

8πGM
, (6)

with κ the surface gravity and M the mass. The entropy should then be Sbh = kc3

4~ A,

with A the area of the horizon. However, one runs into problems by the back-

reaction effect of the particle creation, which will alter the area. It is questionable

if the ordinary laws of thermodynamics can be applied to a black hole. It is clear

that these laws must be constrained to form quantum states with orthonormality

and unitarity conditions. Suppose that an isolated black hole completely evaporate

within a finite time. Loss of quantum coherence should then occur i.e., an initially

pure quantum state should evolve to a mixed state. In general, in the classical

picture, a black hole cannot causally influence its exterior, so it is hard to understand

the mechanism by which thermal equilibrium could be achieved. Observe that the

state of the field at late times in the region I of the Penrose diagram (and so the

particles flux reaching infinity) is described by a density matrix by the S-matrix

analysis. The particles present in region I are strongly correlated with the particles

which entered the black hole at earlier times. Consider now in figure 2 the evolution

of two Cauchy surfaces (”time” Σ1 to ”time” Σ2). When the black hole disappears

from the spacetime, then at late times, the entire state of the field is mixed. If

one takes the ”out” Hilbert space to be the Fock space of the particles propagating

out to infinity at late times, one cannot describe particle creation and scattering by

an ordinary S-matrix. The initial pure state will evolve to a final density matrix.

So we have a breakdown of quantum theory. The antipodal model, however, could

”repair” this breakdown.

eThe inversion Xµ → −
Xµ
X2 (as well as the dilatations) is part of the conformal group19. We shall

see in the next sections that in general the conformal group is a projective group from 5D. The

fifth ”degree of freedom” is a sort of gauge space.
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Fig. 2. Left: formation and evaporation of the Schwarschild black hole. The contour M = 0

lies at the retarded time corresponding to the final evaporation. The geometry is flat above this

contour. Right: Loss of quantum coherence: evolution from a pure state to a mixed state16.

3. The black hole solution on a 5D warped spacetime in conformal

dilaton gravity

3.1. The 5D warped spacetime

Let us consider the 5D spacetime warped spacetime21,24

ds2 = ω(t, r, y)2
[
−N(t, r)2dt2+

1

N(t, r)2
dr2+dz2+r2(dϕ+Nϕ(t, r)dt)2+dy2

]
, (7)

where y is the extra dimension and ω a warp factor in the formulation of Randall-

Sundrum’s (RS) 5D warped spacetime with one large extra dimension and negative

bulk tension Λ5. The Standard Model (SM) fields are confined to the 4D brane,

while gravity acts also in the fifth dimension. Originally, the RS model was applied

to a 5-dimensional anti-de Sitter (AdS) spacetime with a positive brane tension.

This is the so-called RS-1 model, with one brane. The RS-2 model treats two

branes with Z2 symmetry. However, the effective cosmological constant on the

brane can be zero by fine tuning with the negative Λ5. In the RS model there

is a bound state of the graviton confined to the wall as well as a continuum of

Kaluza-Klein (KK) states. Four dimensional gravity is then recovered on the brane

and the hierarchy problem seems to be solved. Since the pioneering publication

of RS, many investigation were done in diverge domains. In particular, Shiromizu

et.al.24,25, extended the RS model to a fully covariant curvature formalism. It this

extended model, an effective Einstein equation is found on the brane, with on the

right-hand side a contribution from the 5D Weyl tensor which carries information

of the gravitational field outside the brane. So the brane world observer may be



September 25, 2021 11:43 ws-procs961x669 WSPC Proceedings - 9.61in x 6.69in slagterMG16 page 9

9

subject to influences from the bulk. The field equations are (were we took an empty

bulk)18

(5)Gµν = −Λ5
(5)gµν , (8)

(4)Gµν = −Λeff
(4)gµν + κ2

4
(4)Tµν + κ4

5Sµν − Eµν , (9)

where we have written

(5)gµν = (4)gµν + nµnν , (10)

with nµ the unit normal to the brane. Here (4)Tµν is the energy-momentum tensor

on the brane and Sµν the quadratic contribution of the energy-momentum tensor
(4)Tµν arising from the extrinsic curvature terms in the projected Einstein tensor.

Further,

Eµν = (5)Cαβρσnαn
ρ(4)gβµ

(4)gσν , (11)

represents the projection of the bulk Weyl tensor orthogonal to nµ. The effective

gravitational filed equations on the brane are not closed. One must solve at the

same time the 5D gravitation field in the bulk.

3.2. The conformal dilaton gravity (CDG) model on a 5D warped

spacetime

One can distinguish several possible ”routes” to the unification of GR and QFT.

One can start, for example, with a given classical theory and applies heuristic quan-

tization rules. One then can make a division in canonical and covariant approaches,

i.e., uses a Hamiltonial formalism or employs covariance at some stage. The CDG

model we consider here, is part of the covariant approach to quantum gravity. The

key feature in CDG, is the splitting of the metric tensor5,17

gµν = ω
4

n−2 g̃µν , (12)

with ω the dilaton field and g̃µν the ””un-physical” spacetime. At high energy, ω

will be treated as a (renormalizable) quantum field. One can prove that the action

(without matter terms for the time being)

S =

∫
dnx

√
−g̃
[1

2
ξω2R̃+

1

2
g̃µν∂µω∂νω + Λκ

4
n−2 ξ

n
n−2ω

2n
n−2

]
, (13)

is conformal invariant under

g̃µν → Ω
4

n−2 g̃µν , ω → Ω−
n−2
2 ω. (14)

The covariant derivative is taken with respect to g̃µν . For details, see Slagter18.

Now we implement the 5D warped spacetime Eq.(7). So

(5)gµν = ω4/3(5)g̃µν ,
(5)g̃µν = (4)g̃µν + nµnν , (15)
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and write again

(4)g̃µν = ω̄2ḡµν . (16)

Variation of the action leads to the field equations

ξωR̃− g̃µν∇̃µ∇̃νω −
2n

n− 2
Λκ

4
n−2 ξ

n
n−2ω

n+2
n−2 = 0 (17)

and

ω2G̃µν = Tωµν − Λg̃µνκ
4

n−2 ξ
2

n−2ω
2n
n−2 , (18)

with

Tωµν = ∇̃µ∇̃νω2 − g̃µν∇̃2ω2 +
1

ξ

(1

2
g̃αβ g̃µν − g̃µαg̃νβ

)
∂αω∂βω. (19)

From the 5D Einstein equations Eq.(8) one obtains ω(t, r, y) = ω1(t, r)ω2(y), with

ω2(y) = l=constant ( the length scale of the extra dimension). The dilaton equations

Eq.(17) is superfluous. Note that the effective Einstein equations Eq.(9) contains

the Eµν , while Tµν and Sµν are taken zero in our case. The dilaton equation is again

superfluous.

It turns out that one can write the field equations for ω and N in the form

(n=4,5)

ω̈ = −N4ω′′ +
n

ω(n− 2)

(
N4ω′2 + ω̇2

)
, (20)

N̈ =
3Ṅ2

N
−N4

(
N ′′ +

3N ′

r
+
N ′2

N

)
− n− 1

(n− 3)ω

[
N5
(
ω′′ +

ω′

r
+

n

2− n
ω′

2

ω

)
+N4ω′N ′ + ω̇Ṅ

]
. (21)

One can solve these equations exact (we took Λeff = 0):

ω =
( a1

(r + a2)t+ a3r + a4

) 1
2n−1

,

N2 =
1

5r2

10a3
2r

2 + 20a2
2r

3 + 15a2r
4 + 4r5 + C1

C2(a3 + t)4 + C3
, (22)

with ai some constants. There is a constraint equation

ω̄′′ = − 2n

n− 2

Λlκ
4

(n−2 ξ
n−2

4(n−1) ω̄
n+2
n−2

N2
− ω′N ′

N
− ω′

2r
+

4

n− 2

˙̄ω2

ω̄N4
−

˙̄ωṄ

N5
, (23)

which l the dimension of y. The solution for the two dilaton fields ω and ω̄ differs

only by the different exponent 3
2 and 1 respectively. The solution For the metric

component is the same (apart from the constants). The solution for the angular

momentum component is

Nϕ = Fn(t) +

∫
1

r3ω̄
n−1
n−3

dr. (24)
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The Ricci scalar for ḡµν (Λ = 0) is given by

R̄ =
12

N2

[
˙̄ω2 −N4ω̄′2

]
, (25)

with is consistent with the null condition for the two-dimensional (t, r) line element,

when R̄ = 0. One can easily check that the trace of the Einstein equations is zero.

Note that N2 can be written as

N2 =
4
∫
r(r + a2)3dr

C2(a3 + t)4 + C3r2
. (26)

So the spacetime seems to have two poles. However, the r = 0 is questionable. The

conservation equations become

∇̄µEµν = ∇̄µ
[ 1

ω̄2

(
−Λκ2(4)ḡµν ω̄

4 + (4)Tµν
(ω̄)
)]
, (27)

which yields differential equations for N̈ ′ and Ṅ as boundary conditions at the

brane. It can be described as the non-local conservation equation. In the high

energy case close to the horizon, one must include the Sµν term. So the divergence

of Eµν is constrained. In the non-conformal case, Eq.(27) contains on the right

hand side also the quadratic correction Sµν of the matter fields on the brane. The

effective field equations, Eq.(9), are then not a closed system. One needs the Bianchi

equations. In fact, Eµν encodes corrections from the 5D graviton effects and are for

the brane observer non-local. In our model under consideration, we have only the

T
(ω)
µν term and no source terms (only the 5D Λ5). But it still sources the KK

modes. The dilaton ω plays the role of a ”scalar field”. But we don’t need the 5D

equations themselves, because the solution for N is the same! It is only the ω4/3

which represents the 5D contribution. There is no exchange of energy-momentum

between the bulk and brane. If one applies the model to a FLRW model? , then the

evolution equations are very complicated. Inhomogeneous and anisotropic effects

from the 4D matter radiation distribution on the brane are sources for the 5D

Weyl tensor Eµν and cause non-local back-reaction on the brane. One needs an

approximation scheme in order to find the missing evolution equation for Eµν .

Fig. 3. Four possible plots of N2 as function of r.
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The locations of the horizon’s and ergo-spheres are found by solving N2 = 0 and

ḡtt = 0 respectively. N2 becomes singular at coordinate time t = tH = −b3+ 4

√
−C3

C2
.

However, ḡµν can be made regular everywhere and singular free by suitable choices

of the parameters bi, ci and Ci. For C1 = 0, ḡµν has one real zero rH =∼ |1.606b2|
and two complex zero’s ∼ (0.178 ± 0.638I)b2. In figure 3 we plotted the possible

graphs. If one ignores the contribution from the bulk, then N2 has for C1 = 0

no real roots, so only naked singularities. The contribution from the bulk then

generates at least one horizon.

3.3. Penrose diagram

If we define the coordinates, dr∗ ≡ 1
N1(r)2 dr and dt∗ ≡ N2(t)2dt, then our induced

spacetime can be written as

ds2 = ω4/3ω̄2
[N2

1

N2
2

(
−dt∗2 + dr∗2

)
+ dz2 + r2(dϕ+

Nϕ

N2
2

dt∗)2
]
, (28)

with

N2
1 =

10b32r
2 + 20b22r

3 + 15b2r
4 + 4r5 + C1

5r2
, N2

2 =
1

C2(t+ b3)4 + C3
(29)

and

r∗ =
1

4

∑
rHi

rHi log(r − rHi )

(rHi + b2)3
, t∗ =

1

4C2

∑
tHi

log(t− tHi )

(tHi + b3)3
. (30)

The sum it taken over the roots of (10b32r
2 + 20b22r

3 + 15b2r
4 + 4r5 + C1) and

C2(t+ b3)4 +C3, i. e., rHi and tHi . This polynomial in r defining the roots of N2
1 , is

a quintic equation, which has some interesting connection with Klein’s icosahedral

solution (see appendix). Further, one can define the azimuthal angular coordinate

dϕ∗ ≡ (dϕ + Nϕ

N2
2
dt∗), which can be used when an incoming null geodesic falls

into the event horizon. ϕ∗ is the azimuthal angle in a coordinate system rotating

about the z-axis relative to the Boyer-Lindquist coordinates. Next, we define the

coordinates27 (in the case of C1 = C3 = 0 and 1 horizon, for the time being)

U+ = eκ(r∗−t∗), V+ = eκ(r∗+t∗) r > rH
U− = −eκ(r∗−t∗), V− = −eκ(r∗+t∗) r < rH , (31)

with κ a constant. The spacetime becomes

ds2 = ω4/3ω̄2
[N2

1

N2
2

log
(
UV

) 1
2κ

dUdV + dz2 + r2dϕ∗2
]
. (32)

In figure 4 we plotted the Penrose diagram (left). The antipodal points P (X) and

P̄ (X̄) are physically identified. If we compactify the coordinates,

Ũ = tanhU, Ṽ = tanhV, (33)
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Fig. 4. Left: Kruskal diagram for ḡµν in (U, V )- coordinates. If one approaches the horizon

from the outside and passes the horizon, one approaches from the ”otherside” the horizon. Right:

Kruskal diagram for ḡµν in (Ũ , Ṽ )- coordinates.

then the spacetime can be written as

ds2 = ω4/3ω̄2
[
H(Ũ , Ṽ )dŨdṼ + dz2 + r2dϕ∗2

]
, (34)

with

H =
N2

1

N2
2

1

κ2 arctanh Ũ arctanh Ṽ (1− Ũ2)(1− Ṽ 2)
. (35)

We can write r and t as

r = rH +
(

arctanh Ũ arctanh Ṽ
) 1

2κα

, t = tH +
(arctanh Ṽ

arctanh Ũ

) 1
2κβ

, (36)

with

α =
rH

4(rH + b2)3
, β =

1

4C2(tH + b3)3
. (37)

Observe that N1 and N2 can be expressed in (Ũ , Ṽ ). The Penrose diagram is drawn

in figure 4 (right). Note that ds2 and H are invariant under Ũ → −Ũ and Ũ → −Ũ .

g̃µν is regular everywhere and conformally flat. The ”scale-term” H is consistent

with the features of the Penrose diagram. Now we have still the ϕ dependency.

We assume no z-dependency. It is expected that the differential equation for ω can

be separated in a (U, V ) part and a ϕ part. The method of ’t Hooft can then be

applied. In the next sections, we will briefly come back to this issue.

4. Related issues of the new black hole solution

4.1. Treatment of the quantum fields

The physical identification in the de Sitter spacetime of P (X) and P̂ (X̂) are consid-

ered as different representations in Kruskal space of one and the same Schwarzschild
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event. There is only one world with one singularity and one exterior region. Fields

which are symmetric under J are identified as

ΨJS =
1

2

[
Ψ(X) + Ψ̂(X̂)

]
. (38)

One then builds these fields from fields with arguments specified in I8. Each of

these fields, positive or negative frequency in I, can be extended to global spacetime

surfaces. However, due to the time reversal, the inner product on the full Hilbert

space have zero norm for the symmetric fields. One then defines negative frequency

functions Ψ↑(−)(X) = Ψ↓(+)(JX) and Ψ↓(−)(X) = Ψ↑(+)(JX), where the arrows stands

for the solutions on the future/past singularity. The symmetric (anti-) solutions

(ε = ±1) are then

Ψ
(1)
JS(X) =

1

2

[
Ψ↑(+)(X) + εΨ↓(−)(X)

]
, Ψ

(2)
JS(X) =

1

2

[
Ψ↓(+)(X) + εΨ↑(−)(X)

]
. (39)

Introducing then reflection and transmission coefficients, one can construct a

wave function regular at the singularities, Ψ
(r)
JS = εK

(K+ε)2

[
Ψ

(1)
JS + εΨ

(2)
JS

]
, with

K = eπω/κ, κ = 1/4M . Thereafter, one constructs hermitian field operators for the

Fock space. Next, one needs the renormalized expectation value of the stress-energy

tensor < Tµν > in the ”semiclassical” equations of Einstein Gµν = 8πG < Tµν >.

If one assumes that there is a r = 0 singularity, then back-reaction will be small

in the vicinity of the horizon (at least for massless fields). The spacetime can then

be approximated by Schwarzschild geometry. The mass will decrease slowly with

time and evaporates. In a flat spacetime, this is easily done, because the vacuum

is well defined. One can calculate the zero-energy state and can construct finite

quantum operators. In curved spacetime, the vacuum state is dependent of the

boundary condition for the propagators (positive frequency modes). In principle,

we can follow the method of Sanchez (for the de Sitter spacetime) for the dilaton

field and our ”un-physical” spacetime ḡµν (Λ = 0),

< ω̄2 > Ḡµν =< T (ω)
µν (ω̄, ḡµν > − < ω̄2 > Eµν , (40)

where T
(ω)
µν depends on the geometry and boundary conditions (see Eq.(19)). Fur-

ther, < T (ω) >= − < ω̄2 > R̄, because Eµν is traceless. We have now contributions

from the antipode:

< T (ω)
µν >→< T (ω)

µν > ± < T̂ (ω)
µν >, < ω̄2 >→< ω̄2 > ± < ̂̄ω2 > . (41)

In the simplified de Sitter space, one then easily construct Green functions9

GαJS(X,X ′) = e2α
[
G(X.X ′) +G(X,JX ′)

]
,

GαJA(X,X ′) = e2α
[
G(X.X ′)−G(X,JX ′)

]
, (42)

with α labels the one parameter family of the de Sitter vacua. The expectation

values for a scalar field and the energy momentum tensor can then be calculated.
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One obtain, for example8,

< Φ̂2
JS,JA >=

1

16π cosπν
[m2 + (ξ − 1

6
)R], (43)

with ν = (9/4−M2/H2)1/2,M2 = m2 +ξR, m the mass of the field and H ∼ Λ. In

our case we have no scalar field, but instead ω. The expression for TŨŨ becomes29

T
(ω)
UU =

c1e
−2c1U

c23c
2
4(c2ρ+ c3)2

(c2c3ρ
2F (U)− c21c22ρ2 + c1c

2
3), (44)

which can be used to evaluate the expectation value. In order to apply the full

antipodal map, one includes the ϕ-dependency in the dilaton equation. The relevant

operator (d’Alembertian) can be separated in the used coordinate system. The

relevant ϕ contribution comes from periodic Mathieu functions (in variable ϕ).

They converge uniformly on all compact sets in the z-plane. Next, one applies the

method of ’t Hooft, by expanding the position variables u±(z, ϕ) and momentum

distributions p±(z, ϕ) in the partial waves of Mathieu functionsf . Further, one then

calculates the gravitational shift δŨ(z, ϕ), in order to carry a particle over from I

to II, or back6, using the Shapiro delay.

4.2. The surface gravity and the conformal gauge

Since we have now the description of the antipodal map in our black hole spacetime,

we will look more closely at the conformal invariance. First of all, one should rely

in the dynamical situation on (conformal) Killing vectors in order to describe the

spacetime symmetries. Our Lagrangian is conformal invariant under Eq.(14), so

we can use the freedom of the conformal factor Ω. Remember, different ω means

different notion of the vacuum state for the in-going and outside observer, so they

will use different conformal gauge freedom. It is desirable that for the out-going

observer, the surface gravity of the horizon is conformal invariant. Further, con-

formal transformations must preserve affinely parameterized null geodesics. This

will deliver Ω for the in-going observer. We can define out-going and in-going null

normals18 for ḡµν

l̄µ = (1, N
√
N2 − r2Nϕ2, 0, 0),

m̄µ =
(
− 1

2r2Nϕ2 − 2N2
,− N

2
√
N2 − r2Nϕ2

, 0, 0
)
. (45)

with l̄µ l̄µ = m̄µm̄µ = 0, l̄µm̄µ = −1. The surface gravity then becomes

κ = 2N
(
∂r(
√
N2 − r2Nϕ2) + ∂t

( 1

N

))
= 2N

(
∂t
√
ḡrr − ∂r

√
ḡtt

)
. (46)

This is consistent with the metric definition of κ.

fSo the spherical harmonics are replaced by the Mathieu harmonics
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4.3. The meaning of the warped spacetime

Let us now return to gµν = ω4/3ω̄2ḡµν . In the CDG setting, the evaporation of the

black hole is also determined by the complementarity transformation of ω between

the in-going and outside observer. Our spacetime is now (b4 = b3b2)

ds2 = ω4/3ω̄2
[
(C2(t+ b3)4 + C3)

(10b32r
2 + 20b22r

3 + 15b2r
4 + 4r5 + C1)

5r2
·(

−dt∗2 + dr∗2
)

+ dz2 + r2(dϕ+
Nϕ

N2
2

dt∗)2
]
, (47)

with

ω4/3ω̄2 =
1

(r + c2)2(t+ c3)2(r + b2)2(t+ b3)2
, (48)

We observe that ω4/3ω̄2 approaches zero for coordinate time t→∞, so gµν shrinks

to zero, so the distant observer sees a gradually shrinking black hole when the metric

time runs to infinity. Further, the only contribution from the 5D spacetime is the

ω4/3. Remarkable, the projected Weyl component is necessary in order to obtain

the same form of N2 and to avoid naked singularities. So ω4/3 = [(r + c2)2(t +

c3)2]−1 is the ”scale” term from the 5D warped spacetime (the warpfactor in the

RS model is the product of y-dependent part and ω part). Suppose one wants

combine the conformal transformation with an internal symmetry transformation,

i.e., a spacetime transformation. In particular, the scale transformations. One can

proof in that case, � log Ω = 019, which is consistent with our 2D null hypersurface

of Eq.(32). Further, in dimension n 6= 4 only the scale-invariant theories based upon

scalar fields (so ω from 5D) are conformally invariant. Conclusion: ω̄ of our ḡµν can

be used in non-vacuum models. An additional advantage of the warped spacetime

in connection with cosmology and hierarchy problem, was already mentioned in the

introduction. A new aspect will be the embedding of the 5D in the 4D spacetime

and the relation with the 3D BTZ blackhole solution.

4.4. The relation with the 3D Ban̆ados-Teitelboim-Zanelli black

hole

In the spacetime under consideration, the dz2 term can be omitted. One obtains

then the 3D Ban̆ados-Teitelboim-Zanelli (BTZ) black hole spacetime. It solves the

Einstein equations with a negative cosmological constant28. The BTZ solution

is related to the AdS/CFT correspondence and intensively studies in connection

with black hole entropy issues. However, we should like to take the cosmological

constant zero. In a former study29, an exact solution was found in a CDG setting

in Eddington-Finkelstein retarded coordinates (U, ρ) (or advanced V ) where the

antipodal map (U, V, ϕ)→ (−U,−V, ϕ+ π) is applicable:

ds2 =
e−2c1U

(c2ρ+ c3)2

[
±c1(c23 − c22ρ2)

c2c3
dU2− 2dUdρ+ dz2 + ρ2

(
dξ+F (U)dU

)2]
, (49)
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which is Ricci flat, while R̃(4) = 6c1c2
c3

. The function F (U) will be fixed when matter

terms are incorporated (i.e. for example, a scalar gauge field). The metric Eq.(49)

will then contain a term b(U, ρ)2dϕ2 and a relation like (Nξ)′ = b
η2X2+ω2 will be

obtained. It has no curvature singularity. The location of the apparent horizon in

U :

ρAH = ± c3√
c2(c2 + c3

c1
F (U)2)

, (50)

with

dρ

dU
=

1

2
e−2c1U ·


− c1
c2c3

. . . . . . . . . ρ→ 0
c3F (U)2+c1c2

c22c3
. . . ρ→∞

0 . . . . . . . . . . . . ρ = ρAH

(51)

which is independent of ω. Here Ci are constants and F (U) a function determined

by the non-diagonal contribution. Further, we have

lim
ρ→0

gUU → ±
c1

c2c3e2c1U
, (52)

So when the evaporation speeds up, it approaches zero. We are dealing here with

null-radiation in the (ρ, z)-plane. One could compare this solution with that found

by Chan31 in standard GR of a spinning black hole. They also find a solution for

F (U) which is determined by an energy-momentum tensor of null spinning dust. It

is again curious that the ”uplifted” BTZ has the same solution, comparable with

the ”up-lifting” 5D29

5. Metric fluctuation and Hawking radiation

In the original deviation of the Hawking radiation, one uses the propagation of a

linear quantized field in a classical background metric. However, near the horizon,

high-frequencies metric fluctuations can contribute to the vacuum polarization and

the impact of gravitational back reactions can be large. These zero-point fluctua-

tions result in a modification of the Hawking radiation by gravitational waves30.

One could question what the effect is of these waves in our CDG model, where we

have instead the dilaton field. Of course, one should need a quantum gravitational

approach, which is not available yet. So need some approximation. However, effect

of the scattering of these quanta at the horizon can be investigated in the context of

the antipodal mapping considered here. g Without the contribution of the metric

fluctuations, the mean number of quanta reaching J + takes the form

< n̄λ >0∼
1

e2πE+/κ − 1
, (53)

gA suitable approximation is the high-frequency approximation applied to a Vaidya spacetime,
where the not-flat background spacetime is distorted by the gravitational waves32. A recent

application was provided by Slagter33,34.
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with E+ the energy measured at J + for the out modes. This is the Planck distri-

bution with temperature T = κ/2π = (8πM)−1. The correction terms can then be

calculated by using the s-modes of a quantum massless scalar field and by using the

fact that the in-going and out-going modes decouple30. One makes use of the mean

energy flux, by calculating dE/dU = 4πr2 < TUU >ren, where the renormalized

surface gravity is used. However, in this approximation, the reflection conditions

are at r=0, with in our antipodal map must be revised (we have no inside). We can

use the (U,U) energy-momentum component of our model and can apply Eq(41)

for the antipodal contribution.

Notice that the meaning of the local dilaton ω̄, is twofold. First, it determines

the metric fluctuations (one also must incorporate in the dilaton equation the ϕ-

dependency). Secondly, The in-going observer will use a different conformal gauge

freedom Ω on ω̄ to describe the vacuum. Further, ω̄ is locally unobservable, unless

we include metric fluctuations (gravitational waves. It will be necessary to compare

this with the usual contribution using the Bunch-Davies method (and to taken into

count the antipodal contribution). Note that the outside observer will use a different

gauge and he/she experiences a mass ∼ ω2N2 and Hawking radiation ∼ ∂U (ω2N2),

while for the in-going observer it is part of his vacuum. On the other hand, the

outside observer is not aware of the antipodal identification. One could also say

that they disagree about the observed scales. Or differently stated, they disagree

about the back reaction from the Hawking radiation.

6. Conclusion and outlook

We find an exact time dependent solution in the conformal dilaton gravity model

on a warped 5D spacetime. The spacetime is written as (5)gµν = ω4/3(5)g̃µν and
(4)g̃µν = ω̄2(4)ḡµν . In our model, ω can be seen as the contribution from the bulk,

while ω̄ is the brane component. It is conjectured that the different conformal

gauge freedom, Ω, the in-going and outside observers possess, can be calculated by

demanding a conformal invariant surface gravity and the preservation of affinely

parameterized null geodesics. This means that the complementarity is expressed

by the different notion of the vacuum state. The solution guarantees regularity

of the action when ω → 0. We don’t need a Weyl term in the action (generates

negative metric states). In stead, we have a contribution from the bulk, i. e., the

electric part of the 5D Weyl tensor. It is remarkable that the 5D field equations and

the effective 4D equations can be written for general dimension n, with n = 4, 5.

The energy-momentum tensor of the time-dependent dilaton, determining also the

Hawking radiation, can be calculated exactly. By suitable choice of the parameters,

the spacetime ḡµν can be regular and singular free. This exact solution, nonetheless

without mass terms, can be used to tackle the deep-seated problem of the black hole

complementarity: the infalling and outside observer experience different ω by the

choice of Ω. The next task is to incorporate mass into our model and investigate the

dilaton-scalar field interaction. The conformal invariance will then spontaneously
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be broken.

Appendix: The Quintic Horizon Equation and Related Issues

Our quintic polynomial, determining the horizons,

f = r5 +
15

4
b2r

4 + 5b22r
3 +

5

2
b32r

2 +
C1

4
= 0, (54)

can be written by a, so-called Tschirnhaus transformation, in the form

r5 − 15b2
16

(C1 + b52)r2 − 125b32
256

(C1 + b52)r − 1

16
(C1 + b52)2 = 0 (55)

By scaling, this form can be reduced to the Bring-Jerrard form r5 + r − c, with

c a function of b2 and C1
26. There is an interesting relation between the symme-

try group of the icosahedron and our quintic equation. The symmetry group is

isomorphic with the Galois group A5 (of an irreducible quintic polynomial). The

icosahedron is dual to the dodecahedron, i.e., their symmetries are isomorphic. The

A5 is interesting in physics, because it is a simple group having no invariant sub-

groups. It has three orbits, which are invariant under the antipodal map. So the

connection with the Möbius group is clear. For details, we refer to Toth26. It is

conjectured that our quintic polynomial (Eq.(54)) has a deep-seated relation with

the 5D spacetime solution. Further, it is remarkable that the resulting quintic equa-

tion is independent of the dimension of our manifold (n = 4, 5). Moreover, the nice

fitting of the antipodal map in our model cannot be a coincident. From Eq.(26) we

observe that the derivative of f is 5r(r + b2)3. So it is expected that our quintic

equation results from a immersionh of a closed surface S in R3 into R4. This is

currently under investigation by the author.
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