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Neutron stars as gravitational-wave sources

• The wait continues for a detection of
gravitational radiation from rotating
neutron stars with (non-axially sym-
metric) deformations known as moun-
tains.

• Searches in the data have, so far, only
provided upper limits on the size of
the deformations.

• There have been theoretical attempts
to estimate the maximum mountain
that a neutron-star crust can sup-
port (Ushomirsky et al., 2000; Haskell
et al., 2006; Johnson-McDaniel and
Owen, 2013).
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Deformed stellar models

• Traditionally, one encounters the multipole moments, Q`m , by examining
how the exterior gravitational potential of a non-spherical body differs
to that of a spherical one. In the Newtonian limit, this is given by

δΦ(x i) =

∞∑
`=0

∑̀
m=−`

δΦ`m(r)Y`m(θ, φ), δΦ`m(r) = − 4πG
2`+ 1

Q`m

r`+1

for r ≥ R, where

Q`m ≡
∫ R

0
δρ`m(r)r`+2dr .

• The dominant multipole in gravitational-wave emission is the quadrupole
moment, Q22. Thus, we specialise to the (`,m) = (2, 2) mode.

• Formally, one can use the law of momentum conservation – the Euler
equation – to characterise a stellar model,

0 = −∇ip − ρ∇iΦ+∇jtij + fi

≡ −Hi +∇jtij + fi ,

where tij is the trace-free, symmetric shear-stress tensor for an elastic
solid and fi is a deforming force.
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Building mountains: the usual approach
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• It would seem that calculating
mountains in the usual fashion,
via the perturbed Euler equation

δH SB
i ≡ H B

i − H S
i = ∇jtij(η),

(1)
has some complications regard-
ing satisfying the boundary con-
ditions of the problem.

• Additionally, in some sense, the
fiducial force (which is a proxy
for the possibly quite complicated
evolutionary history!) is hidden in
the calculation.

• To this end, we introduce another
scheme which makes explicit use
of the deforming force.
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A new mountain scheme
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• The difference between stars C
and A gives

δH AC
i = ∇jtij(ξ). (2)

• It turns out that the mountains
calculated using (2) are equivalent
to solving the previous perturbed
Euler equation (1).
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Examples of the deforming force

• We generated a set of fully relativistic neutron-star models (with a real-
istic equation of state) that were subjected to a few specific deforming
forces. The amplitude of the force on each star was increased until the
crust began to fracture. This produced the maximum mountain that
each star could support for a given force.
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The equation of state

• We also considered the role of the equation of state in supporting the
mountains, by implementing a subset of equations of state obtained from
chiral effective field theory with a speed-of-sound parametrisation (Tews
et al., 2018).
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Summary & future work

• We introduce a new scheme to calculate mountains that explicitly sat-
isfies the necessary boundary conditions. However, this scheme requires
the introduction of a deforming force.

• Such a force will depend on the (possibly quite complex) formation his-
tory of the star. For this reason, we believe that evolutionary calcula-
tions will be necessary to make progress on this problem (Bildsten, 1998;
Singh et al., 2020; Osborne and Jones, 2020).

• The neutron-star equation of state plays an important role in supporting
the mountains. In particular, the shear modulus of the crust (unsurpris-
ingly) has a significant impact on how large the mountains can be.

• More accurate descriptions of the neutron-star crust may need to take
into account plastic deformation.
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