

Teleparallel, f(T) and Torsional Gravity and Cosmology

Emmanuel N. Saridakis

National Observatory of Athens, Greece University of Science and Technology, Hefei, China

E.N.Saridakis – MG16, AT1 Juy 2021

Goal

 We investigate cosmological scenarios arising from torsional modified gravity that can describe the observed Universe as a whole

Modified Gravity

Torsional Gravity

- Einstein 1916: General Relativity:
 energy-momentum source of spacetime Curvature
 Levi-Civita connection: Zero Torsion
- Einstein 1928: Teleparallel Equivalent of GR: Weitzenbock connection: Zero Curvature

[Cai, Capozziello, De Laurentis, Saridakis, Rept.Prog.Phys. 79]

Teleparallel Equivalent of General Relativity (TEGR)

- Let's start from the simplest tosion-based gravity formulation, namely TEGR:
- Vierbeins e_A^{μ} : four linearly independent fields in the tangent space $g_{\mu\nu}(x) = \eta_{AB} e_{\mu}^A(x) e_{\nu}^B(x)$
- Use curvature-less Weitzenböck connection instead of torsion-less Levi-Civita one: $\Gamma_{\nu\mu}^{\lambda\{W\}} = e_A^{\lambda} \partial_{\mu} e_{\nu}^{A}$
- Torsion tensor:

 $T_{\mu\nu}^{\lambda} = \Gamma_{\nu\mu}^{\lambda\{W\}} - \Gamma_{\mu\nu}^{\lambda\{W\}} = e_A^{\lambda} \left(\partial_{\mu} e_{\nu}^A - \partial_{\nu} e_{\mu}^A \right)$ [Einstein 1928], [Pereira: Introduction to TG]

Teleparallel Equivalent of General Relativity (TEGR)

- Let's start from the simplest tosion-based gravity formulation, namely TEGR:
- Vierbeins e_A^{μ} : four linearly independent fields in the tangent space $g_{\mu\nu}(x) = \eta_{AB} e_{\mu}^A(x) e_{\nu}^B(x)$
- Use curvature-less Weitzenböck connection instead of torsion-less Levi-Civita one: $\Gamma_{\nu\mu}^{\lambda\{W\}} = e_A^{\lambda} \partial_{\mu} e_{\nu}^{A}$
- Torsion tensor:

$$T^{\lambda}_{\mu\nu} = \Gamma^{\lambda\{W\}}_{\nu\mu} - \Gamma^{\lambda\{W\}}_{\mu\nu} = e^{\lambda}_{A} \left(\partial_{\mu} e^{A}_{\nu} - \partial_{\nu} e^{A}_{\mu} \right)$$

 Lagrangian (imposing coordinate, Lorentz, parity invariance, and up to 2nd order in torsion tensor)

$$L = T = \frac{1}{4} T^{\rho\mu\nu} T_{\rho\mu\nu} + \frac{1}{2} T^{\rho\mu\nu} T_{\nu\mu\rho} - T^{\rho}_{\rho\mu} T^{\nu\mu}_{\nu}$$

Completely equivalent with

GR at the level of equations

[Einstein 1928], [Hayaski, Shirafuji PRD 19], [Pereira: Introduction to TG]

f(T) Gravity and f(T) Cosmology

- f(T) Gravity: Simplest torsion-based modified gravity
- Generalize T to f(T) (inspired by f(R))
 - $S = \frac{1}{16\pi G} \int d^4 x \ e \ \left[T + f(T)\right] + S_m \ [Ferraro, Fiorini PRD 78], [Bengochea, Ferraro PRD 79]$ [Linder PRD 82]
- Equations of motion:

 $e^{-1}\partial_{\mu}\left(ee^{\rho}_{A}S^{\mu\nu}_{\rho}\right)\left(1+f_{T}\right)-e^{\lambda}_{A}T^{\rho}_{\mu\lambda}S^{\nu\mu}_{\rho}+e^{\rho}_{A}S^{\mu\nu}_{\rho}\partial_{\mu}(T)f_{TT}-\frac{1}{4}e^{\nu}_{A}[T+f(T)]=4\pi Ge^{\rho}_{A}T^{\nu\{\rm EM\}}_{\rho}$

f(T) Gravity and f(T) Cosmology

- f(T) Gravity: Simplest torsion-based modified gravity
- Generalize T to f(T) (inspired by f(R))

 $S = \frac{1}{16\pi G} \int d^4 x \ e \ \left[T + f(T)\right] + S_m$ [Ferraro, Fiorini PRD 78], [Bengochea, Ferraro PRD 79] [Linder PRD 82]

Equations of motion:

$$e^{-1}\partial_{\mu}\left(ee_{A}^{\rho}S_{\rho}^{\mu\nu}\right)\left(1+f_{T}\right)-e_{A}^{\lambda}T_{\mu\lambda}^{\rho}S_{\rho}^{\nu\mu}+e_{A}^{\rho}S_{\rho}^{\mu\nu}\partial_{\mu}(T)f_{TT}-\frac{1}{4}e_{A}^{\nu}[T+f(T)]=4\pi Ge_{A}^{\rho}T_{\rho}^{\nu\{EM\}}$$

f(T) Cosmology: Apply in FRW geometry:

 $e_{\mu}^{A} = diag (1, a, a, a) \implies ds^{2} = dt^{2} - a^{2}(t)\delta_{ij} dx^{i} dx^{j}$ (not unique choice)

Friedmann equations:

$$H^{2} = \frac{8\pi G}{3} \rho_{m} - \frac{f(T)}{6} - 2f_{T}H^{2}$$

$$Find easily$$

$$\dot{H} = -\frac{4\pi G(\rho_{m} + p_{m})}{1 + f_{T} - 12H^{2}f_{TT}}$$

f(T) Cosmology: Background Effective Dark Energy sector: $\rho_{DE} = \frac{3}{8\pi G} \left[-\frac{f}{6} + \frac{T}{3} f_T \right]$

$$w_{DE} = -\frac{f - Tf_T + 2T^2 f_{TT}}{[1 + f_T + 2Tf_{TT}][f - 2Tf_T]}$$

[Linder PRD 82]

- Interesting cosmological behavior: Acceleration, Inflation etc
- At the background level indistinguishable from other dynamical DE models

Non-minimally coupled scalar-torsion theory

- In curvature-based gravity, apart from R + f(R) one can use $R + \xi R \varphi^2$
- Let's do the same in torsion-based gravity:

$$S = \int d^4 x \ e \left[\frac{T}{2\kappa^2} + \frac{1}{2} \left(\partial_\mu \varphi \partial^\mu \varphi + \xi T \varphi^2 \right) - V(\varphi) + L_m \right] \qquad \text{[Geng, Lee, Saridakis, Wu PLB 704]}$$

Non-minimally coupled scalar-torsion theory

- In curvature-based gravity, apart from R + f(R) one can use $R + \xi R \varphi^2$
- Let's do the same in torsion-based gravity:

$$S = \int d^4x \, e \left[\frac{T}{2\kappa^2} + \frac{1}{2} \left(\partial_\mu \varphi \partial^\mu \varphi + \xi T \varphi^2 \right) - V(\varphi) + L_m \right]$$

[Geng, Lee, Saridakis, Wu PLB 704]

Friedmann equations in FRW universe:

$$H^{2} = \frac{\kappa^{2}}{3}(\rho_{m} + \rho_{DE})$$

$$\dot{H} = -\frac{\kappa^{2}}{2}(\rho_{m} + \rho_{m} + \rho_{DE} + \rho_{DE})$$

with effective Dark Energy sector: $\rho_{DE} = \frac{\dot{\phi}^{2}}{2} + V(\phi) - 3\xi H^{2}\phi^{2}$

$$p_{DE} = \frac{\dot{\phi}^{2}}{2} - V(\phi) + 4\xi H\phi\dot{\phi} + \xi (3H^{2} + 2\dot{H})\phi^{2}$$

Different than non-minimal quintessence!

(no conformal transformation in the present case)

[Geng, Lee, Saridakis, Wu PLB 704]

[Hohmann, Pfeifer, PRD 98]

Non-minimally coupled scalar-torsion theory

- Main advantage: Dark Energy may lie in the phantom regime or/and experience the phantom-divide crossing
- Teleparallel Dark Energy:

Teleparallel Equivalent of Gauss-Bonnet and f(T,T_G) gravity

- In curvature-based gravity, one can use higher-order invariants like the Gauss-Bonnet one $G = R^2 - 4R_{\mu\nu}R^{\mu\nu} + R_{\mu\nu\lambda}R^{\mu\nu\lambda}$
- Let's do the same in torsion-based gravity:
- Similar to $e\overline{R} = -eT + 2(eT_v^{\nu\mu})_{\mu}$ we construct $e\overline{G} = eT_G + totdiverg$ with

Teleparallel Equivalent of Gauss-Bonnet and f(T,T_G) gravity

- In curvature-based gravity, one can use higher-order invariants like the Gauss-Bonnet one $G = R^2 - 4R_{\mu\nu}R^{\mu\nu} + R_{\mu\kappa\lambda}R^{\mu\kappa\lambda}$
- Let's do the same in torsion-based gravity:
- Similar to $e\overline{R} = -eT + 2(eT_v^{\nu\mu})_{,\mu}$ we construct $e\overline{G} = eT_G + totdiverg$ with

 $T_{G} = \left(K_{ea_{2}}^{a_{1}}K_{b}^{ea_{2}}K_{fc}^{a_{3}}K_{d}^{fa_{4}} - 2K_{a}^{a_{1}a_{2}}K_{eb}^{a_{3}}K_{fc}^{e}K_{d}^{fa_{4}} + 2K_{a}^{a_{1}a_{2}}K_{eb}^{a_{3}}K_{f}^{ea_{4}}K_{cd}^{f} + +2K_{a}^{a_{1}a_{2}}K_{eb}^{a_{3}}K_{f}^{ea_{4}}K_{cd}^{f}\right)\delta_{a_{1}a_{2}a_{3}a_{4}}^{abcd}$

• $f(\mathbf{T}, T_G)$ gravity:

$$S = \frac{1}{2\kappa^2} \int d^4 x \, e \, \{T + f(T, T_G)\} + S_m$$

- [Kofinas, Saridakis, PRD 90a] [Kofinas, Saridakis, PRD 90b] [Kofinas, Leon, Saridakis, CQG 31]
- **Different** from f(R,G) and f(T) gravities

Teleparallel Equivalent of Gauss-Bonnet and f(T,T_G) gravity

[Kofinas, Saridakis, PRD 90a] [Kofinas, Saridakis, PRD 90b] [Kofinas, Leon, Saridakis, CQG 31]

Torsional Gravity with higher derivatives

 $S = \frac{1}{2\kappa^2} \int d^4 x \ e \ F(T, (\nabla T)^2, \Diamond T) + S_m(e^A_\mu, \Psi_m)$

[Otalora, Saridakis, PRD 94]

FIG. 1. Subclasses of metric-affine geometry, depending on the properties of connection.

Growth-index constraints on f(T) gravity

Perturbations: $\ddot{\delta}_m + 2H\dot{\delta}_m = 4\pi G_{eff} \rho_m \delta_m$, clustering growth rate:

$$\frac{d \ln \delta_m}{d \ln a} = \Omega_m^{\gamma}(a)$$

• $\gamma(z)$: Growth index. $G_{eff} = \frac{1}{1 + f'(T)}$

Growth-index constraints on f(T) gravity

Perturbations: $\ddot{\delta}_m + 2H\dot{\delta}_m = 4\pi G_{eff} \rho_m \delta_m$, clustering growth rate:

Observational Constraints on f(T) gravity

[Nunes, Pan, Saridakis, JCAP08] [Nunes, Bonilla, Pan, Saridakis, EPJC77]

[Anagnostopoulos, Basilakos, Nesseriss, Saridakis JCAP08]

[Anagnostopoulos, Basilakos, Saridakis PRD 100]

Gaussian Process constraints on f(T)

H0 and σ 8 tension can be alleviated

0.81

72

 H_0

68

76

80

[Yang,Zhang,Chen,Cai,Li,Saridakis,Xue, PRD 101] [Said, Mifsud, Parkinson, Saridakis, Sultana, 2005.05368] [Nunes, JCAP 1805]

0.4

0.24 Ω₀^m

0.16

0.32 0.40

 H_0

-0.8-0.40.0

 $0.738^{+0.015}$

 $0.866^{+0.02}_{-0.02}$

6482.27

73.5-2.

+2.1

3+0.021

6480.48

72

0.028+3.3

4 1 $0.855_{-0.033}^{+0.023}$

 Ω_{F0}

 H_0

 σ_8

 $\chi^2_{min}/2$

Baryogenesis and BBN constraints on f(T) gravity

Baryon-anti-baryon asymmetry through CP violating term: $\frac{1}{M_{*}^{2}}\int d^{4}x \ e\left[\partial_{\mu}f(T)\right]J^{\mu}$

[Oikonomou, Saridakis, PRD 94]

BBN constraints: $\frac{\delta \Gamma_f}{T_f} \approx \frac{\rho_T}{\rho} \frac{H_{GR}}{10q T_f^5}$

[Capozziello, Lambiase, Saridakis, EPJC77]

Galaxy-Galaxy lensing constraints on f(T) gravity

$$f(T) = -T - 2\Lambda/M_P^2 + \alpha T^\beta$$

[Chen. Luo, Cai, Saridakis, PRD 102]

Gravitational waves - Observations

Observations: 43 up to now (34 BH-BH, 3 NS-NS, 2 NS-BH, 4 uncertain, 19-85 Msun, 320-2800 MPc)

• Expectations: Many thousands in the next years

26

Gravitational waves in f(T) gravity

For tensor perturbations:
$$g_{00} = -1$$
, $g_{0i} = 0$,
 $g_{ij} = a^2 (\delta_{ij} + h_{ij} + \frac{1}{2} h_{ik} h_{kj})$ i.e. $\vec{e}^0_\mu = \delta^0_\mu$,
 $\vec{e}^a_\mu = a \delta^a_\mu + \frac{a}{2} \delta^i_\mu \delta^{aj} h_{ij} + \frac{a}{8} \delta^i_\mu \delta^{ja} h_{ik} h_{kj}$,
 $\vec{e}^0_\mu = \delta^0_\mu$,
 $\vec{e}^0_\mu = \delta^0_\mu$,
 $\vec{e}^a_\mu = \frac{1}{a} \delta^a_\mu - \frac{1}{2a} \delta^{\mu i} \delta^j_a h_{ij} + \frac{1}{8a} \delta^{i\mu} \delta^j_a h_{ik} h_{kj}$
We obtain: ${}^{(3)}R \approx -\frac{1}{4} a^{-2} (\partial_i h_{kl} \partial_i h_{kl})$,
 $K^{ij}K_{ij} \approx 3H^2 + \frac{1}{4} \dot{h}_{ij} \dot{h}_{ij}$,
 $K \approx 3H$,
 $T = T^{(0)} + O(h^2) = 6H^2 + O(h^2)$
And finally: $S = \frac{M_P^2}{2} \int d^4x \sqrt{-g} \Big[\frac{f_T}{4} (a^{-2} \vec{\nabla} h_{ij} \cdot \vec{\nabla} h_{ij} - \dot{h}_{ij} \dot{h}_{ij}) + 6H^2 f_T - 12H \dot{f}_T - T^{(0)} f_T + f(T^{(0)}) \Big]$

[Cai, Li, Saridakis, Xue, PRD 97]

[Li, Cai, Cai, Saridakis, JCAP 1810]

Gravitational waves in f(T) gravity

Varying the action and going to Fourier space we get the equation for GWs:

$$\ddot{h}_{ij} + 3H(1 - \beta_T)\dot{h}_{ij} + \frac{k^2}{a^2}h_{ij} = 0$$

with
$$\beta_T \equiv -\frac{\hat{f}_T}{3Hf_T}$$
 $h^{(1)}_{\mu\nu} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 2\gamma_1^{(1)1} & B_1^2 \exp(ip_\mu x^\mu) & 0 \\ 0 & B_1^2 \exp(ip_\mu x^\mu) & -2\gamma_1^{(1)1} & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$.

- An immediate result: The speed of GWs is equal to the speed of light!
- GW170817 constraints that

$$|c_g/c - 1| \le 4.5 \times 10^{-16}$$

are trivially satisfied.

[Cai, Li, Saridakis, Xue, PRD 97]

Gravitational waves in f(T) gravity

• Gw's propagation at cosmological scales: $h = e^{-\mathcal{D}} e^{-ik\Delta T} h_{GR}$

 $\mathcal{D} = \frac{1}{2} \int \nu \mathcal{H} d\tau'$ (affects amplitude) $\Delta T = \int \left(1 - c_T - \frac{a^2 \mu^2}{2k^2}\right) d\tau'$ (affects phase)

[Cai, Li, Saridakis, Xue PRD 97][Farrugia, Said, Gakis, Saridakis, PRD 97][Soudi, Farrugia, Gakis, Said, Saridakis, PRD 100][Nunes, Pan, Saridakis, PRD98]

Gravitational Waves in f(T,B) gravity

$$\delta e^{A}{}_{\mu}] := \begin{bmatrix} \varphi & a\left(\partial_{i}\beta + \beta_{i}\right) \\ \delta^{I}{}_{i}\left(\partial^{i}b + b^{i}\right) & a\delta^{Ii}\left(-\psi\delta_{ij} + \partial_{i}\partial_{j}h + 2\partial_{(i}h_{j)} + \frac{1}{2}h_{ij} + \epsilon_{ijk}\left(\partial^{k}\sigma + \sigma^{k}\right) \right) \end{bmatrix}$$

$$\left[\delta g_{\mu\nu}\right] = \begin{bmatrix} -2\varphi & a\left(\partial_i(b-\beta) + (b_i - \beta_i)\right)\\ a\left(\partial_i\left(b-\beta\right) + (b_i - \beta_i\right)\right) & 2a^2\left(-\psi\delta_{ij} + \partial_i\partial_jh + 2\partial_{(i}h_{j)} + \frac{1}{2}h_{ij}\right) \end{bmatrix}$$

We get:
$$\ddot{h}_{ij}+(3+
u)H\dot{h}_{ij}+rac{k^2}{a^2}h_{ij}=0$$
 with $u=rac{1}{H}rac{\dot{f}_T}{a}$ $c_T^2=1$

with

١

Stability conditions:
$$f_T < 0$$

 $f_{BB} < 0$

 $=\overline{H}\overline{f_T}$

[Bahamonde, Gakis Kiorpelidi, Koivisto, Said, Saridakis, EPJC81]

Conclusions - Outlook

- Torsional modified gravity is theoretically robust and leads to very efficient cosmology at both background and perturbation levels.
- f(T) gravity, f(T,TG), f(T,B), f(Q) gravity, Symmetric teleparallel gravity, and modified teleparallel gravity in general, currently under investigation

[Saridakis, Cai, Capozziello, Said, Bahamonde, Koivisto, Ren, Zhao, Wong, Ilyas, Zhu, Zheng, Yan, Zhang, Chen, Zhang, Luo, Khurshudyan, Marciano, Krssak, Odintsov, Nojiri, Nunes, Toporensky, Basilakos, Anagnostopouos, Kofinas, Dialektopoulos, Gakis, Palikaris, Iosifidis, Kiorpelidi, Chatzifotis, Asimakis]

• vi) Get prepared for the huge flow of data that will come!

"Those that do not know geometry are not allowed to enter". Front Door of Plato's Academy

THANK YOU!

Corfu Schools and Conferences

COST CA18108 Second Annual Conference - Corfu (Greece)

6-8 October 2021 Corfu Summer Institute

http://www.physics.ntua.gr/corfu2021/

Curvature and Torsion

- Vierbeins e_A^{μ} : four linearly independent fields in the tangent space $g_{\mu\nu}(x) = \eta_{AB} e_{\mu}^{A}(x) e_{\nu}^{B}(x)$
- Connection: ω_{ABC}
- Curvature tensor: $R^{A}_{B\mu\nu} = \omega^{A}_{B\nu,\mu} \omega^{A}_{B\mu,\nu} + \omega^{A}_{C\mu}\omega^{C}_{B\nu} \omega^{A}_{C\nu}\omega^{C}_{B\mu}$
- Torsion tensor: $T^A_{\mu\nu} = e^A_{\nu,\mu} e^A_{\mu,\nu} + \omega^A_{B\mu} e^B_{\nu} \omega^A_{B\nu} e^B_{\mu}$
- Levi-Civita connection and Contorsion tensor: $\omega_{ABC} = \Gamma_{ABC} + K_{ABC}$

$$K_{ABC} = \frac{1}{2} \left(T_{CAB} - T_{BCA} - T_{ABC} \right) = -K_{BAC}$$

Curvature and Torsion Scalars:

$$R = \overline{R} + T - 2\left(T_{\nu}^{\nu\mu}\right)_{;\mu}$$

$$R = g^{\mu\nu}R_{\mu\nu} = g^{\mu\nu}R^{\rho}_{\mu\rho\nu} \qquad \qquad T = \frac{1}{4}T^{\mu\nu}T_{\mu\nu} + \frac{1}{2}T^{\mu\nu}T_{\mu\rho} - T^{\rho}_{\mu}T^{\mu}_{\nu}$$

 Tension between the data and Planck/ACDM. The data indicate a lack of "gravitational power" in structures on intermediate-small cosmological scales.

			07											-
Parameter P	Planck15/ Λ CDM [12]	WMAP7/ Λ CDM [45]	0.7	Pla	anck15/A	CDM+	g_a Bes	t Fit		•			•	
$\Omega_b h^2$	0.02225 ± 0.00016	0.02258 ± 0.00057	0.6	E					Pl	anck1:	5/ACD	M		
$\Omega_c h^2$	0.1198 ± 0.0015	0.1109 ± 0.0056	0.0	I I	, i.	.I.,			Т					
n_s	0.9645 ± 0.0049	0.963 ± 0.014		[1	I I I I	Ττ † Ι		τĪ	I				
H_0	67.27 ± 0.66	71.0 ± 2.5	0.5	¦ ↓ ↓	• 1			т					_	
Ω_{0m}	0.3156 ± 0.0091	0.266 ± 0.025	0.5		1		<u></u> *+ <u></u> *				İ I	•	• 1	
w	-1	-1	R				╋╼╋╈╍				ý I			
σ_8	0.831 ± 0.013	0.801 ± 0.030	, ⁶ 0.4				t 💾	1					1	
			щ 0. т	ŀ ₹1,		<u>↓</u> †µ± ⊥	L T		1	•				-
				F↓ ↓	11 + 1	II I	Ι		4	Ī		1	•	1
			0.3	[†				_ _ 1				1	1	
					1	•				1	1	1	1	
				l I								1		
			0.2		i M Bect F		-0.28 a	-0.2	78)	1 [; [AD7//	CDM	
				$MCDW DCSt PR(S20_m = 0.20, 08 = 0.70)$						WINE ///ICDIVI				

Tension $1 - f\sigma 8$

[Kazantzidis, Perivolaropoulos, PRD97]

0.0

0.5

1.0

Ζ

1.5

Tension between the data (direct measurements) and Planck/ACDM (indirect measurements). The data indicate a lack of "gravitational power".

Tension2 – H0

38