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General Aim

In the present work we aim at showing that a generalised TOV equation also

characterises the equilibrium of models endowed with other symmetries besides spherical.

[ A. Maciel, M. Le Delliou, JPM, Class. Quantum Grav. (2020) 37, 125005]
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“Hydrostatic” Equilibrium

The Tolman-Oppenheimer-Volkov (TOV) equation appears as the relativistic counterpart of the
classical condition for hydrostatic equilibrium

r

r+dr
Pr+dr

PrMr

Pr+dr

Pr+dr

Pr

Pr+dr

and establishes that static equilibrium requires the negative pressure gradient

dP

dr
= −

ρ+ P

1− 2GM
r

(
M

r2
+ 4πPr

)
. (1)

(ρ+ P ) accounts for the relativistic inertia, (1− 2GM/r)−1 conveys the spatial curvature, and
M = M(r) = 4π

∫
ρ(r′) r′2 dr′ is the Misner-Sharp-Hernandez (MSH) gravitational mass.

JPM (Instituto de Astrofísica e Ciências do Espço & Dep. Física – Faculty of Science, University of Lisbon)Tolman-Oppenheimer-Volkoff conditions beyond spherical symmetry Lisboa/Rome - 2021 3 / 21



Overview of Literature
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Overview of Literature 2

R2
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Class of space-times

We envisage spacetime environments characterised by metrics that have a codimension-two
maximally symmetric foliation, that can be written as

ds2 = Nabdx
adxb + Y 2(xc)

(
dθ2 + S2

ε dφ2
)
, (2)

where
dΩ2

ε =
(
dθ2 + S2

ε dφ2
)

(3)

f2
✏ = sin2 u , ✏ = 1

=u , ✏ = 0

= sinh2 u ✏ = �1

<latexit sha1_base64="lZoFsgxr/4mVSuH2b84b8aeRuW4="></latexit>

d⌦2
✏ = du2 + f2

✏ dv2
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with

Sε =

 sin θ, for ε = 1
1, for ε = 0

sinh θ, for ε = −1
,

So ε = 0,±1 distinguishes the 3 possible curvatures: ε = 0 corresponds to flat spatial
hypersurfaces, ε = +1 corresponds to closed spatial hypersurfaces, and ε = −1 corresponds to
open spatial hypersurfaces, endowed with negative curvature.
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Double-null formalism

We divide the tangent space T at each event in two orthogonal subspaces T = N ⊕ S. Here
S is the subspace generated by the orbits of (θ, φ) andN , the subspace of T orthogonal to S.

We define an orthonormal two dimensional basis (na , ea) for N , whose induced metric is
Nab, according to Eq. (2). This basis satisfies

−nana = eaea = 1 , naea = nasab = easab = 0 . (4)

where sab = Y 2γab the induced metric in each leaf of the foliation where Y (xc) is the warp
factor.

We further introduce a dual null basis for the same subspace from na and ea by

ka =
1

2
(na + ea) , la =

1

2
(na − ea) ,

na = ka + la , ea = ka − la , (5)

which satisfies

kaka = lala = 0 , kala = −
1

2
. (6)
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Double-null formalism

So, the metrics can be cast as

gab =
2

kclc
k(alb) + sab . (7)

We associate the null expansion for each null vector as follows

Θk =
1

2
sabLksab =

1

2
Y −2γabLkY 2γab =

2

Y
ka∂aY . (8)

We may define the mean curvature form Ka = ∂a lnY 2, such that, we obtain for the
two-expansion Θ(u) of any vector ua in N

Θ(u) = uaKa . (9)
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Double-null formalism

The field equations then read

LkΘ(k) = νkΘ(k) −
Θ2

(k)

2
− 8πTabk

akb , (10a)

LlΘ(l) = νlΘ(l) −
Θ2

(l)

2
− 8πTabl

alb , (10b)

LkΘ(l) + LlΘ(k) = −Θ(l)νk −Θ(k)νl−

2 Θ(k) Θ(l) + ε
2 kala

Y 2
+ 16π Tabk

alb , (10c)

where we included the inaffinities νk and νl, defined as

νk =
1

kclc
lbka∇akb νl =

1

kclc
kbla∇alb . (11)

In this work we adapt our vector basis to a fluid source, such that na gives its flow. By
construction, the flow na is always orthogonal to the surfaces of symmetry and will be
characterized by two quantities

A = eaṅa = eanb∇bna , B = ean′a = eaeb∇bna . (12)

The scalar A gives us the acceleration of the flow. The scalar B gives the change of direction
of na as we travel along ea.
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Double-Null Formalism

We now assume that our metric has a Killing vector orthogonal to maximally symmetric
surfaces

If a spacetime is described by a metric of the form (2) and admits an orthogonal Killing vector
χa ∈ N , then Θχ = 0.

This follows from the assumption of the existence of a Killing vector field

0 = Y −2γabLχgab = Y −2γabLχNab + 2Θχ

= −Y −2NabLχγab + 2Θχ . (13)

and from

Lχγab = 0 , (14)

since χa does not admit components in S and γab doesn’t depend on coordinates along N .

This implies that if dY is spacelike, then χa is timelike and vice-versa. If dY is null, the Killing
vector will also be null.
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Mass-Energy

Our symmetry assumptions imply that the only non-vanishing optical scalar on the leaves Σ is
the null expansion (shear and vorticity vanish). Therefore, the Hawking-Hayward
mass-energy is reduced to

MΣ =
1

8π

√
A

16π

∫
Σ

[
R−

1

kala
Θ(k)Θ(l)

]
dΣ (15)

Since we assume that Σ is maximally symmetric, we have R =
2ε

Y 2
. We also have

Θ(k)Θ(l) = ka∂a lnY 2 lb∂b lnY 2 = kalb∂a lnY 2∂b lnY 2 =

= k(alb)∂a lnY 2∂b lnY 2 =
kclc

2
gab∂a lnY 2∂b lnY 2 =

1

2
kclc||d lnY 2||2 = kclc

2

Y 2
||dY ||2 ⇒

Θ(k)Θ(l)

kclc
=

2

Y 2
||dY ||2 , (16)
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Mass-Energy

We thus obtain

||dY ||2 = ε−
κµ(Y )

2Y
. (17)

For the spherical case ε = 1 and A = 4πY 2, we obtain the known interpretation of ||dY || in
terms of the Misner-Sharp mass-energy, which coincides with the Hawking-Hayward one

MΣ =
Y

2

(
1− ||dY ||2

)
⇔ ||dY ||2 = 1−

2M

Y
. (18)

In the planar and hyperbolic cases (ε = 0 and ε = −1, respectively), the Hawking-Hayward
mass is not conveniently defined for the integration domain set by our preferred foliation, as it
requires a closed compact surface.
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An alternative route can be obtained by computing the HH mass-energy in a finite domain,
symmetric with respect to the central plane or wire, Y = 0, and taking the limit where the domain
tends to be the whole surface. The finite integration domain consist of the union of

1 a subset of the ΣY , that we denote Γr , bounded by a circle γr of radius r on the (θ, φ)
coordinate plane and

2 a compact surfaces given by the surfaces ∆r defined by γr transported along Y orbits.

It forms a closed surface, corresponding to a part of a cylinder bounded by Y = constant surfaces
in the space of coordinates (Y, θ, φ). Therefore, the HH mass-energy enclosed by those surfaces
will by finite, and given by

Mr =
1

8π

√
Ar

16π

(∫
Γr

(. . . )S2
ε dθdφ+

∫
∆r

(. . . )d∆

)
(19)

where (...) replaces the integrand of the HH mass. In the limit r →∞, the first integral in Eq. (19)
scales as r2 while the second one scales as r. This means that, in the limit r →∞we obtain

Mr

Ar
→

µ(Y )

4πY 2
(20)
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Mass-Energy

Figure: Hyperbolic Foliation Case ε = −1
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Mass-Energy

We then define the quasi-local mass-energy parameter µ(Y ) by

MΣ =
µ(Y )

4π

∫
S2
ε (θ) dθdφ , (21)

and we write

Y

4πκ

[
R−

Θ(k)Θ(l)

kclc

] ∫
Σ

dΣ = (22)

Y

4πκ

[
2ε− 2||dY ||2

] ∫
Sε(Θ)dθdφ . (23)

We eliminate the improper area integral on both sides

||dY ||2 = ε−
κµ(Y )

2Y
. (24)

So we realise that for ε = 0,−1 we have µ < 0 violating the weak energy condition.
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Generalised TOV equation

Taking the source to be a perfect fluid, then the energy momentum tensor is

Tab = ρnanb + P (eaeb + sab) . (25)

Contracting the conservation of the energy-momentum tensor with eb we get

eb∇aTab = (ρ+ P )ṅbeb + ea∇aP = 0⇒

A = −
ea∂aP

ρ+ P
. (26)

Since Θ(n) = 0, this implies that ea is proportional to ∂Y , and as ea is normalized, we have

ea =
1

||dY ||
∂aY . Imposing eaea = 1 we obtain

ea = ||dY ||(∂Y )a , (27)

which gives us

AΘe = −||dY ||2
2

Y

∂Y P

ρ+ P
. (28)

and so we derive is the unified TOV equation

∂Y P

ρ+ P
= −

(
µ(Y )

Y 2
+ 4πPY

)(
ε−

2µ(Y )

Y

)−1

, (29)
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Generalised TOV equation

Notice that to determine µ(Y ) we can use as usually

∂Y µ = 4πρY 2 , (30)

which looks like the mass-energy equation of spherical symmetry.
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Example: Incompressible fluid solutions

By choosing a timelike coordinate T along the flow we consider the following line element in the
(T, Y ) coordinates:

ds2 = −α2(Y )dT +
dY 2

ε− 2µ(Y )
Y

+ Y 2dΩε , (31)

where dΩε =
(
dθ2 + S2

ε dφ2
)

and the functions α and µ will be given by solving Einstein
equations.
We apply our unified treatment to find the analogs of Schwarzschild interior solution, that is, we will
use case study with the equation of state of an incompressible fluid ρ = ρ0 constant. It is
important to note that as the static solutions with ε 6= 1 violate the WEC, we should take ρ0 < 0 in
those cases.
The generalised Euler equation implies

α′

α
= −

P ′

ρ+ P
⇒ α =

c0

ρ0 + P
, (32)

where c0 is an integration constant that can be set by rescaling the time coordinate and the prime
denotes Y differentiation.
Equation (30) gives us

µ(Y ) =
4πρ0Y 3

3
, (33)
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Incompressible fluid

Substitution into the generalised TOV equation yields

P (Y ) = ρ0

 2
√
|ε− Ys

Yg
|

3
√
|ε− Ys

Yg
| −
√
|ε− YsY 2

Y 3
s
|
− 1

 . (34)

where Yg is the analog of the radius of the object and is the least positive number that satisfy

P (Yg) = 0, Ys =
8πρ0Y 3

g

3
is the analog of the Schwarzschild radius, although it can not be

interpreted as a location when it will be a negative number. T
his gives

α =
1

2

3

√∣∣∣∣ε− Ys

Yg

∣∣∣∣−
√√√√∣∣∣∣∣ε− YsY 2

Y 3
g

∣∣∣∣∣
 (35)

which has a similar form to the interior Schwarzschild solution. Of course the physical properties
are very distinct, since the solutions violate the WEC.
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Incompressible fluid

The following figure summarises the differences between the choices of ε

the hyperbolic case presents P ′ > 0
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Summary and Conclusions

We analysed spacetimes with a two-dimensional maximally symmetric foliation sourced by a
perfect fluid.

if there is a Killing vector orthogonal to the leaves, its two-expansion vanishes.

the geometric meaning of the mass-energy in such spacetimes, and our procedure matches
the traditional mass parameter found in those cases by usual methods of integration of
Einstein equations .

the only static fluid solutions that satisfy the WEC are the spherical ones, as the other two
cases require a negative energy density

We found that, besides the known case of spherically symmetric spacetimes, we obtain a
static interior fluid configuration only in the case of planar symmetric spacetimes. In the
hyperbolic case, the static configuration is an exterior solution that can surround an inner
vacuum region.

Thanks for listening!
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