Causality in Spinfoams

Eugenio Bianchi (ebianchi@psu.edu)

Penn State - Institute for Gravitation & the Cosmos

Causality in Spinfoams
Correct Lorentzian Spinfoams
are formulated in terms of:
- a two-complex
$$(= \{v, e, f\})$$

- spins on faces j_{f}
- spins on faces j_{f}
- SU(a) intertwiners on edges ic
This talk: Add
- Causal structure on wedges $v_{=}(v_{f}) = \{e_{i}, e_{i}\}$
 $\varepsilon_{w} = \begin{cases} +1 & co-chronal edges & V & A_{f} \Rightarrow \\ -1 & anti-chronal edges & \begin{cases} V & A_{f} \Rightarrow \\ -1 & anti-chronal edges & \end{cases}$

Causality in Spinfoams * Previous work. We are building on: · Markopoulou & Smolin (1997) "Causal crolation_ · Livine & Oriti (2002) "Implementing Courselity..." [BC model] (w= (vf) = {e,,ee} Costês & Smolin (2014) "Energetic cousal sets"
Wieland (2014) "New Action ..." • Engle (2011), "... proper vertex..." [Euclideen EPRI] Engle, Vilensky & Zipfel (2015) [Lorentzien EPRL] · Rovelli & Wilson-Ewing (2012) "Discrete symmetries_" · Donà, Gozzini & Nicotra (2021) "A Wick rotation ...

Plan:

11 Geometry of a Lorentzian 4-simplex

2 Causal vertex amplitude

3 Semiclassical limit

1 Geometry of a Lorentzian 4-simplex

Data:

· Minkowski Space (R4, 913) (-+++) · Five time-like vectors Not with 4d closure (a, b = 1...s)

$$\begin{array}{l} \text{Span} \left\{ N_{1, \dots}^{T}, N_{5}^{T} \right\} = \mathbb{R}^{4} \\ \gamma_{IJ} \quad N_{a}^{T} \quad N_{a}^{J} = - v_{a}^{2} \\ \sum_{q=1}^{5} \quad N_{a}^{T} = 0 \end{array}$$

Reconstruction: (cf. Minkowski Thm)

1 Geometry of a Lorentzian 4-simplex in terms of 4-normals
$$N_{1}^{2}$$

• 4-volume $V = \left(\frac{9}{4} \left| \frac{1}{4!} \operatorname{Cranl} N_{1}^{\pm} N_{2}^{\pm} N_{3}^{\pm} N_{4}^{\pm} \right| \right)^{V_{3}}$
• 3-volume of tetrahadra $v_{a} = \left(-q_{\pm 5} N_{a}^{\pm} N_{b}^{\pm}\right)$
 $\Rightarrow N_{a}^{\pm} = v_{a} \hat{N}_{a}^{\pm}$ unit 4-normal
• 2-area of triangles $A_{ab} = \frac{3}{4} \frac{v_{a} v_{b}}{V} \sqrt{(q_{\pm 5} \hat{N}_{a}^{\pm} \hat{N}_{b}^{\pm})^{2} - 1}$
• scalar product of unit normals
 $-q_{\pm 5} \hat{N}_{a}^{\pm} \hat{N}_{b}^{\pm} = \mathcal{E}_{ab} \cosh \beta_{ab}$ $\beta_{ab} \geq \beta_{ab} \geq 0$ boost from s-plane a to splane b
 $\mathcal{E}_{ab} = \left\{ -1 \quad anti-chronal 4-normals$
 $Causal structure$

1 Lorentzian Regge Action in terms of 4-normals
$$N_{a}^{I}$$

 $S_{R} = \sum_{a \in b} \frac{A_{ab}}{8\pi 6} \in E_{ab} \beta_{ab}$
* Strategies for computing $\mathcal{E}_{ab} \beta_{ab}$ from 4-normals:
(a) Use $\cosh \beta \pm \sinh \beta = e^{\pm \beta}$
 $\mathcal{E}_{ab} \beta_{ab} = \log \left| -\eta_{IS} \hat{N}_{a}^{I} \hat{N}_{b}^{S} + \left((-\eta_{IS} \hat{N}_{a}^{I} \hat{N}_{b}^{S})^{2} - 1 \right) \right|$

* Feynman is prescription for unitary irrep of SL(2, C)

Berrett, Dowdall, Fairbairo, Gomes & Hellmann (2009)
Donà & Speziale (2020) "Asympt. of lovest unity."
Causal Wedge Amplitude as integral over CP'
K(ha, hb; jab, Gab, Gab, Eab) =
$$\int_{-\infty}^{+\infty} \frac{d\tau}{2\pi i} \frac{cab}{\tau - \tau - i \frac{cab}{2\pi i} 0^+}$$
 [jab, Gab] Jab, Gab)
boundary data

$$\cdot \exp\left[j_{ab} \log \frac{\langle G_{ab}|h_{a}^{\dagger} Z_{ab}\rangle^{2} \langle h_{b}^{\dagger} Z_{ab}| G_{ba}}{|h_{a}^{\dagger} Z_{ab}\|^{2}} + i \mathcal{T} j_{ab} \log \frac{\|h_{b}^{\dagger} Z_{ab}\|^{2}}{\|h_{a}^{\dagger} Z_{ab}\|^{2}}\right]$$

(ausal EPRL Verter Amplitude Av (j1, ie, Ew)
K(he, he; ju. Gu. Gu., Eu) =
$$\int_{2\pi i}^{4\pi} \frac{Gu}{\pi - \pi - i \leq u} D^{i}$$
 [ju. Gu. [D (he'h.) 1 ju., Gu.)
i) EPRL receivered as unconstrained sum K^{#PRL}(...) = $\sum_{k=1}^{2\pi} K(..., E_k)$
ii) Linear in boundary state \Rightarrow Av can be expressed in any basic (or a operator)
iii) Linear in boundary state \Rightarrow Av can be expressed in any basic (or a operator)
iii) The Feynman is intered by the and residue results in sum of $\frac{1}{5}(*)$ analogous to EPRL
iv) Beyond eingle vertex: 2-complex (with causal edge orientation $\mathcal{E}_{k} \Rightarrow$ Uedge orientation $\mathcal{E}_{u} \Rightarrow$ Uedge (cond)
U) Relation to Engle's Proper Vertex for the form \mathcal{E}_{u} (full) = \mathcal{E}_{u} (full) = \mathcal{E}_{u} (full) = \mathcal{E}_{u} (full) = \mathcal{E}_{u} (cord) = \mathcal{E}_{u