16<sup>th</sup> Marcel Grossmann Meeting

### Design of the SFA and PFA instrument onboard eXTP

Yusa Wang IHEP, CAS, China On Behalf of SFA and PFA Teams



### Outline



2 SFA design and development status



PFA design and development status



Test facilities and calibration plans



### Outline



2 SFA design and development status



PFA design and development status



Test facilities and calibration plans

.....



### Introduction to eXTP

eXTP: enhanced X-ray Timing and Polarimetry Mission



**Scientific goal**: eXTP is a science mission designed to study the state of matter under extreme conditions of density, gravity and magnetism.

**Operation:** Pointing observation with high accuracy and stability.

| Payload                                | Configuration | Optics           | Detector                          | Eff. area (m²)               |
|----------------------------------------|---------------|------------------|-----------------------------------|------------------------------|
| Spectroscopy<br>Focusing Array (SFA)   | 9 telescopes  | Wolter-I, nickel | SDD, 0.5-10 keV<br>180 eV @ 6 keV | 0.6 m <sup>2</sup> (1-2 keV) |
| Large Area Detector<br>(LAD)           | 40 modules    | МСР              | SDD, 2-30 keV<br>180 eV @ 6 keV   | 3.1 m² (2-10 keV)            |
| Polarimetry<br>Focusing Array<br>(PFA) | 4 telescopes  | Wolter-I, nickel | GPD, 2-8 keV<br>1.8 keV @ 6 keV   | 380 cm² @ 3 keV              |
| Wide Field Monitor<br>(WFM)            | 6 cameras     | Coded mask       | SDD, 2-50 keV<br>500 eV @ 6 keV   | 3 Sr (FOV)                   |



### **SFA&PFA requirements – SFA1/3**

Successfully passed the review of SFA requirement, including the requirement of science, instrument, platform and calibration.

| Performance               | Requirement                                                   | Goal                                                         |
|---------------------------|---------------------------------------------------------------|--------------------------------------------------------------|
| Energy range              | 0.5-10 keV                                                    | 0.3-12 keV                                                   |
| Effective area            | 6000 cm <sup>2</sup> (1-2 keV)<br>4400 cm <sup>2</sup> @ 6keV | 6600 cm <sup>2</sup> (1-2keV)<br>4800 cm <sup>2</sup> @ 6keV |
| Angular resolution        | ≤1 arcmin (HPD)<br>≤3 arcmin (W90)                            | 30 arcsec (HPD)                                              |
| Energy resolution         | ≤180 eV @ 6 keV                                               | ≤150 eV @ 6 keV                                              |
| Time resolution           | 10 µs                                                         | 6 µs                                                         |
| Absolute time<br>accuracy | 2 µs                                                          | 1 µs                                                         |
| Dead time                 | ≤ 5% @ 1Crab                                                  | ≤ 3% @ 1Crab                                                 |
| Sensitivity               | 4×10 <sup>-15</sup> erg/cm2/s                                 |                                                              |

eXTP Requirement Specification eXTP-IHEP-SYS-RS-0001

### eXTP

**Requirement Specification** 

**eXTP Science Requirements Document** 

| Reference name | eXTP-IHEP-SYS-RS-0001 |
|----------------|-----------------------|
| Version        | 2.2                   |
| Date           | 2020-09-23            |
|                |                       |
| Prepared by    | eXTP Science Team     |
| Checked by     | Shuang-Nan Zhang      |
| Approved by    | Shuang-Nan Zhang      |
| Contact        | zhangsn@ihep.ac.cn    |



### **SFA&PFA requirements – SFA2/3**

### The requirement of pointing, stability are analyzed.

|                                | Definition              | Description                                               | Error     |
|--------------------------------|-------------------------|-----------------------------------------------------------|-----------|
|                                | Mirror assembly         | The contribution of MA                                    | 5″        |
| Pointing<br>accuracy<br>of SFA |                         | The uncorrected contribution after thermal/vibration test | 5″        |
|                                | Measurement<br>accuracy | The measurement accuracy of the pointing                  | 6″        |
|                                | Platform                | Satellite platform                                        | 44″ (TBC) |

|                    |                  | Stability of e       | effective area |                             |
|--------------------|------------------|----------------------|----------------|-----------------------------|
| Time<br>Stability₽ |                  | <b>(3σ)</b> <i>θ</i> |                | Measurement≓                |
|                    | range∂ ne<br>per |                      | per octave₊⊃   |                             |
| <1 Hz₊             | >1s₊⊃            | <0.2%                | <0.5%          | from the star tracker,      |
|                    |                  |                      |                | ≥8Hz¢                       |
| 1-100 Hz40         | 1s – 10ms¢       | <0.02‰               | <0.5%          | From platform₊ <sup>2</sup> |
| >100 Hze           | <10ms.1          | Low is               | Low is         | From the plat form₽         |
| -100112            | ~101115+         | better₽              | better₽        |                             |



### **SFA&PFA requirements – SFA3/3**

| Device    | Process            | Content                        | Description                                           |  |
|-----------|--------------------|--------------------------------|-------------------------------------------------------|--|
| telescope | reflection         | effective area (Ε,φ)           | collecting area, reflectivity,<br>vignetting function |  |
|           |                    | point spread function<br>(Ε,φ) | mirror quality                                        |  |
|           |                    | field of view                  | focal length, detector geometry                       |  |
|           |                    | boresight                      | alignment                                             |  |
| filter    | absorption         | transmission                   | filter thickness, pinhole                             |  |
|           |                    | edge effect                    | the lost of the part of one event                     |  |
|           | charge<br>release  | low energy threshold           |                                                       |  |
| SDD       |                    | quantum efficiency             |                                                       |  |
|           |                    | energy resolution              |                                                       |  |
|           | charge<br>drifting |                                | drift time                                            |  |
|           |                    | Timing                         | time resolution                                       |  |
|           |                    |                                | time stability                                        |  |
|           | charge<br>readout  | readout<br>noise/amplitude     | nonlinearity                                          |  |
| firmuare  | signal             | mode exchange                  | demonding differently way as we                       |  |
| mmware    | processing         | background evaluation          | depending different x-ray sources                     |  |



### **SFA&PFA requirements – PFA1/2**

Successfully passed the review of PFA requirement, including the requirement of science, instrument, platform and calibration.

| Performance                            | Requirement                    | Goal                |
|----------------------------------------|--------------------------------|---------------------|
| Energy range                           | 2-8 keV                        | 1.5-12 keV          |
| Effective area @3keV                   | 380 cm <sup>2</sup>            | 420 cm <sup>2</sup> |
| Field of view@3keV                     | 8×8arcmin                      |                     |
| Angular resolution                     | ≤30 arcsec (HPD)               | ≤15 arcsec (HPD)    |
| Energy resolution@5.9 keV              | 25%                            | 20%                 |
| Time resolution                        | 10 µs                          | 8 µs                |
| Absolute time accuracy                 | 4 µs                           |                     |
| Dead time                              | ≤ 10% @ 1Crab                  | ≤ 3% @ 1Crab        |
| Response stability ( $\triangle p/p$ ) | 5%                             | 2%                  |
| Point source localization              | 5 arcsec (1σ)                  |                     |
| Maximum flux                           | ≥1Crab                         | ≥2Crab              |
| Polarimetric sensitivity(2-8keV)       | 3% (10 <sup>6</sup> s, 1mCrab) | 2%                  |
| Spurious polarization                  | 1%                             |                     |



### **SFA&PFA requirements – PFA2/2**

| Device    | Process            | Content                        | Description                                           |  |
|-----------|--------------------|--------------------------------|-------------------------------------------------------|--|
| telescope | reflection         | effective area (Ε,φ)           | collecting area, reflectivity,<br>vignetting function |  |
|           |                    | point spread function<br>(Ε,φ) | mirror quality                                        |  |
|           |                    | field of view                  | focal length, detector geometry                       |  |
|           |                    | boresight                      | alignment                                             |  |
|           | charge<br>release  | Spatial resolution             | for imaging                                           |  |
|           |                    | Dead time                      |                                                       |  |
|           |                    | quantum efficiency             |                                                       |  |
|           |                    | energy resolution              |                                                       |  |
| GPD       | charge<br>emission |                                | event direction                                       |  |
|           |                    | Polarization                   | time of arrival                                       |  |
|           |                    |                                | energy                                                |  |
|           | charge<br>readout  | Timing                         | nonlinearity                                          |  |
| firmware  | signal             | mode exchange                  | depending differently may service                     |  |
| nrmware   | processing         | background evaluation          | depending different x-ray sources                     |  |



### Outline



2 SFA design and development status



PFA design and development status



Test facilities and calibration plans

.....



### SFA design and development status - introduction

### SFA: Spectroscopy Focusing Array instrument





### SFA design and development status - collaboration



### 

### SFA design and development status – optics1/3

According to the requirement of SFA, the requirement of SFA optics was confirmed.

| Performance              | Value                                                  |
|--------------------------|--------------------------------------------------------|
| Number of mirror modules | 9                                                      |
| Focal length             | 5.25m                                                  |
| Envelope                 | ≤600mm (diameter)                                      |
| Effective on axis        | ≥820cm <sup>2</sup> @2keV<br>≥550cm <sup>2</sup> @6keV |
| Energy range             | 0.5-10keV                                              |
| Field of view            | ≥12′                                                   |
| Angular resolution (HPD) | < 30" (15")                                            |
| Mass budget              | ≤130kg                                                 |
| Operation temperature    | 20±1℃                                                  |





### SFA design and development status – optics2/3

The off-axis performance of SFA was simulated. Especially focused spot on the 19-elements SDDs is shown. The stray light of the single-reflection of hyperboloid is not the x-ray from interested source, but from the contamination source.





Yuxuan Zhu 2020

### 

### SFA design and development status – optics3/3

### Baseline solution

- Manufacture at Media Lario (under contract with IHEP), with supervision from OAB
- Status: optical design and preliminary thermal and mechanical analysis, mature technology of electroforming, carbon overcoating under investigation.

### Parallel solution

- Technology development and partial modules manufacture in China. Manufacture in Harbin Institute of Technology (HIT), with support from XIOPM and IHEP, CAS
- Status: optical design and preliminary thermal and mechanical analysis, demonstration module under development, optical or UV metrology under investigation.



The 19-cell SDD was tested in MPE soon. The performance of the SDD and ASIC are obtained. Especially the temperature effect is Important to the SFA thermal design.



The current operating temperature of SDD is -55°C, which is not optimal temperature for one stage TEC. According to the result and the next proton irradiation test, the operation temperature of SDD will be confirmed. The optimal temperature is -20~-30 °C(*Lothar Strüder, 2020*).



Since delivery of 19-cell SDD will not be confirmed until IHEP and MPE sign a MOU. To verify the design of FP, we are integrating a 7 SDDs array to test the performance of the whole optical design with SFA, especially the number of needed cell to background rejection.



The time performance under high flux can also be tested.



### SFA design and development status – thermal

#### The temperature of mirror assembly is controlled by accurate heating







The temperature of focal plane camera is controlled by TEC and radiator



### SFA design and development status – structure

The structure design of MA is reasonable under the current vibration conditions

RTA, RTA1

19

214e+05 41e+05 68e+05



| Ģ. |
|----|
|    |
|    |
|    |
| )  |
|    |
|    |















The structure of focal plane camera is also reasonable



### Outline



2 SFA design and development status



PFA design and development status



Test facilities and calibration plans

.....



### PFA design and development status - introduction

### PFA: Polarimetry Focusing Array instrument



# 

### PFA design and development status - collaboration

The PFA is a China-Italy joint payload led by CAS/IHEP.

Partners(hardware only, limited to China and Italy only):

- The Institute of High Energy Physics , Chinese Academy of Sciences (CAS/IHEP)
- ASI and Istituto Nazionale di Fisica Nucleare (INFN)
- Tsinghua University

### Contributions:

**IHEP** contribution

- lead the PFA instrument development.
- PFA mirror assembly developments (Optics)
- develop the PFA focal plane camera with the GPD module
- conduct PFA instrument assembly integration test (AIT) and calibration
- INFN contribution (Confirmed agreements with ASI and INFN)
  - develop the new ASIC XPOL-III ASICs for QM and FM
  - Develop, qualify and define new-design GPD (jointly with China)
  - Support to Back End Electronics (BEE)
  - Participation in calibrations
  - Simulation and analysis packages
  - Expertise

Tsinghua contribution

- physical design of the instrument
- GPD assembly, testing and calibration

### 

### **PFA design and development status – optics**

According to the requirement of PFA, the requirement of PFA optics was confirmed. Almost same to that of SFA, making the design of two instruments identical.

| Performance              | Value                     |                                     |
|--------------------------|---------------------------|-------------------------------------|
| Number of mirror modules | 4                         | 900<br>                             |
| Focal length             | 5.25m                     | 800                                 |
| Envelope                 | ≤600mm (diameter)         | E) 600                              |
| Effective on axis        | ≥890cm <sup>2</sup> @3keV | ₩ 500<br>9 380cm <sup>2</sup> @3keV |
| Energy range             | 2-10keV                   |                                     |
| Field of view            | ≥12′                      | 200                                 |
| Angular resolution (HPD) | < 30" (15")               | 100                                 |
| Mass budget              | ≤130kg                    | 0 2 3 4 5 6 7 8                     |
| Operation temperature    | 20±1℃                     | Energy (keV)                        |



#### Design for PFA focal plane camera





Functional diagram for PFA focal plane camera





Performance of the in-orbit polarization source was tested.









Performance of GPD was verified onboard the "PolarLight".



AgF2-II (5.33 keV)

LF-II (6.14 keV)







### Outline



2 SFA design and development status



PFA design and development status



Test facilities and calibration plans



**Test facilities: 100m X-ray test facility** 

X-ray sources -

Pump stations

The time to achieve work pressure is less than 4 hours, depending on ten 10000L/s cryopumps.

> Big vacuum / chamber

Long tube: φ0.6×100m Big chamber: φ3.4×8m Pressure: 5×10<sup>-5</sup>Pa Contamination: 1.0×10<sup>-8</sup>g/cm<sup>2</sup>/day Multi-target x-ray source and DCM



### **Test facilities: 100m X-ray test facility**

### Inside the big vacuum chamber



This facility is mainly for the calibration of X-ray mirror and mirror assembly.



### **Test facilities: 8m X-ray test facility**



Long tube: φ0.1×8m Vacuum chamber: φ2×2m Pressure: 5×10<sup>-5</sup>Pa Contamination: 3.0×10<sup>-8</sup>g/cm<sup>2</sup>/day Multi-target x-ray source and DCM There is another 8m x-ray test facility at IHEP, which can meet the requirements of x-ray detectors, electronic boxes.



# 

### Test and calibration plan for SFA FPD

### SFA FPD at 8m facility

- Performance under low temperature
- Energy response (0.3-12keV) and low energy threshold
- Energy resolution
- Time accuracy and time resolution
- Split events between cells and optimization
- The effect or electron on SDD.
- The performance of electron deflector
- Performance of background rejection with multi-cells

### SFA FPD at synchrotron light source

- SDD QE measurement at PTB
- Transmission of kinds of filters at HEPS









### Test and calibration plan for PFA FPD

### PFA FPD at 8m facility

- Performance under different temperature
- Energy response (1.5-12keV) and low energy threshold
- Energy resolution
- Time accuracy and time resolution
- The effect or electron on GPD.
- The polarization performance





### PFA FPD at synchrotron light source

• GPD QE measurement at PTB





### **Test and calibration plan for SFA&PFA mirrors**

### Mirror at 100m facility, with CXC

- Filed of view and PSF
- HPD at Al-K, Cu-K, C-K
- Effective area at AI-K, Cu-K, C-K
- Measurement of focal length and Pointing
- W90 and Off-axis performance
- Checking the performance of stray light(background)
- The performance of mirror depending on the temperature

### Mirror at other facilities

Proton irradiation



### Test and calibration plan for SFA telescopes

SFA&PFA at 100m facility, supported by integrated structure

- Filed of view and PSF
- Effective area at Al-K, Cu-K, C-K
- Verification of focal length
- Off-axis performance
- Optical axis alignment and guide
- Time accuracy and time resolution under high flux
- Checking the performance of stray light(background)
- Performance of background rejection with multi-cells
- Checking the polarization performance

The SFA&PFA will do the end-to-end at100m facility, checking every function and performance one by one.



### Summary

- The SFA and PFA are designed well even under preliminary design phase.
- The development of SFA and PFA are ongoing on critical technologies.
- The test facilities are available and ground calibration plans are given.





### Thank you!



### **Backup slides**





### **Backup slides**

eXTP is still in preliminary design, depending on the thermal and interface design.

### Schedule in 2021&2022

The conceptual design of SFA is completed, the review will be organized, May 2021 There are some verification and test after conceptual design review, June 2021 The qualification design review of SFA will be completed in August 2021 Some STM will be delivered to MICROSAT June 2022