

Exploring alternatives to the Hamiltonian formulation of the AOS black hole model

Alejandro García-Quismondo

Instituto de Estructura de la Materia (IEM-CSIC)

MG16

Introduction

- ✓ System: interior region of a Schwarzschild black hole.
- ✓ Canonical formalism: Ashtekar-Barbero variables + constraints.
- ✓ Dynamical information contained in two canonical pairs:

$$\{b, p_b\} = G\gamma, \qquad \{c, p_c\} = 2G\gamma.$$
Radial sector Angular sector

✓ Variables bound by the Hamiltonian constraint:

$$N = \frac{\gamma \delta_b \sqrt{|p_c|}}{\sin \delta_b b}, \quad NH = \frac{L_o}{G} (O_b - O_c),$$
$$O_b = -\frac{1}{2\gamma} \left(\frac{\sin \delta_b b}{\delta_b} + \frac{\gamma^2 \delta_b}{\sin \delta_b b} \right) \frac{p_b}{L_o}, \quad O_c = \frac{1}{\gamma} \frac{\sin \delta_c c}{\delta_c} \frac{p_c}{L_o}.$$

✓ Partial Hamiltonians: functions of dynamical variables and polym. param.

$$\delta_b, \delta_c \to 0.$$

Selection of parameters

- ✓ How to choose these parameters?
 - 1. Constants on the whole phase space.
 - 2. Arbitrary functions of phase space.
 - 1.5. Constant along dynamical trajectories.
- ✓ AOS → intermediate path (1.5).
- ✓ How to define the polym. parameters as Dirac observables?
 → Functions of constants of motion.
- The partial Hamiltonians turn out to be constants of motion:

$$O_b|_{\text{on-shell}} = O_c|_{\text{on-shell}} = m.$$

✓ AOS → $\delta_i = g_i(m)$ → in practice, their Poisson brackets are ignored.

Parameters as constants of motion

- ✓ Bodendorfer, Mele, Münch → $\delta_i = g_i(O_i)$.
- ✓ Hamiltonian description where the Poisson brackets of the parameters are taken into account in the derivation of the dynamical equations?
- ✓ The contributions of each partial Hamiltonian cannot be told apart:

$$\delta_i = f_i(O_b, O_c).$$

✓ The radial and angular sectors no longer decouple!

$$\partial_t i = C_i \left[s_i \frac{L_o}{G} \{i, p_i\} \frac{\partial O_i}{\partial p_i} \right], \quad \partial_t p_i = C_i \left[-s_i \frac{L_o}{G} \{i, p_i\} \frac{\partial O_i}{\partial i} \right],$$

✓ A phase space dependent factor multiplies the AOS dynamical equations.

$$C_i = \frac{1 - \Delta_{jj} - \Delta_{ji}}{(1 - \Delta_{ii})(1 - \Delta_{jj}) - \Delta_{ij}\Delta_{ji}}, \quad j \neq i, \quad \Delta_{ij} = \frac{\partial O_i}{\partial \delta_i} \frac{\partial f_i}{\partial O_j}.$$

Time redefinitions

✓ These factors can be reabsorbed through time redefinitions:

$$d\tilde{t}_i = C_i dt.$$

- ✓ These redefinitions are sector dependent!
- ✓ Dynamical equations adopt the same form as AOS when written in terms of two a priori different time variables.
- ✓ ¿Can the off-shell freedom be used to set $\tilde{t}_b|_{\text{on-shell}} = \tilde{t}_c|_{\text{on-shell}}$?

$$C_b|_{\text{on-shell}} = C_c|_{\text{on-shell}}$$

$$1 - F_c(p_c)\frac{\partial f_c(m,m)}{\partial m} = 1 - F_b(p_b)\frac{\partial f_b(m,m)}{\partial m}.$$

✓ The answer is in the negative, unless we consider constant param. on the whole phase space.

Large black hole mass limit

✓ The two time variables coincide at the lowest order in an asymptotic expansion:

$$\lim_{m \to \infty} \tilde{t}_b = \lim_{m \to \infty} \tilde{t}_c = \tilde{t}.$$

- \checkmark In the asymptotic limit, the equations of motion of the AOS model can be recovered.
- ✓ In this asymptotic limit, the solutions of the AOS model are solutions of our dynamical equations, up to subdominant contributions.
- \checkmark Indeed, an asymptotic expansion reveals that

$$\lim_{m \to \infty} F_i(p_i) \frac{\partial f_i(m,m)}{\partial m} = 0.$$

✓ Hence, the equality condition that could not be made work unless the parameters were taken as constants does hold in the limit of large masses.

Relation between time variables

 \checkmark We can obtain the exact relation between the two time variables by integrating

$$\frac{d\tilde{t}_b}{C_b} = \frac{d\tilde{t}_c}{C_c}.$$

 $\delta_i \sim m^{-1/3}$

 \checkmark In the limit of large black hole masses, we find that

$$\tilde{t}_c = \tilde{t}_b - \frac{1}{9}\gamma^2 \left(-3\tilde{t}_b + 3\sinh\tilde{t}_b + \cosh\tilde{t}_b - 1\right)\delta_b^2 + o\left(\delta_b^2\right).$$

✓ The leading order reproduces the result discussed in the previous slide.

Conclusions

- ✓ Our objective is to explore alternatives that had not been explored before in order to see whether other proposals can be reconciled with the results of the original model.
- ✓ The effect of considering polymerisation parameters that are Dirac observables is encoded in two phase space dependent factors in the dynamical equations. These can be interpreted as local time redefinitions: two distinct time variables appear if the parameters are chosen as constants of motion.
- ✓ These two variables are approximately similar to each other in the asymptotic limit of large black hole masses, recovering the dynamical equations of the AOS model.
- ✓ In this limit, the original results of the AOS model can be reconciled with our formalism to a certain extent, since the spacetime geometry is modified.
- ✓ This might lead to an alleviation of certain criticisms of the original model (asymptotic behaviour...).

References

A. Ashtekar et al., Phys. Rev. Lett. **121**, 241301 (2018); Phys. Rev. D **98**, 126003 (2018).
A. Ashtekar and J. Olmedo, Int. J. Mod. Phys. D **29**, 2050076 (2020).

- □ N. Bodendorfer et al., Class. Quantum Grav. **37**, 187001 (2019).
- □ A. G.-Q. and G. A. Mena Marugán, arXiv:2107:00947.

Acknowledgements:

"la Caixa" Banking Foundation has supported this work.

Thank you

for your attention