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Motivation



Power spectrum: (2π)3δD(k + k′)P (k) = 〈δ(k)δ(k′)〉
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1. Modified gravities which aim to explain the accelerated expansion of the
Universe often invoque screening mechanisms to recover GR in certain limits.

2. The “standard” statistics used in Cosmology give the same weight to all
observed objects.

Point 2 means that regions where there are more tracers become overrepresented in
“standard” statistics. In turn, because of point 1, this implies that we are probing
regions where the screenings are more efficient.



Chameleon screening mechanism

One of the most popular screening mechanisms is the so-called chameleon

V (φ) = Vvacuum(φ) + Ṽ (φ, ρ)
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ϕ/ϕ0
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eff = V ′′(φ0)� V ′′vacuum(φv,0) = m2



0.05 0.10 0.15 0.20 0.25
600

700

800

900

1000

1100

1200

1300
F5

GR

non -screened



Cosmic voids radial profile

[P. Zivicki et al, 1411.5694]



Marked statistics are tailored to probe cosmological regions where
screenings are not efficient.



Marked Density Field



Marked Density Field δM

As usual, the density fluctuation is introduced by ρ(x, t) = ρ̄(t)
[
1 + δ(x, t)

]
Define the mark

m[δ;R] =

(
1 + δ∗

1 + δ∗ + δR

)p
,

If δ∗, p > 0, the mark up-weights low density regions.

δR is the overdensity field δ averaged over regions of size R. It is the smoothed
density fluctuation

δR(x, t) =

∫
d3x′WR(x− x′)δ(x′, t).

Finally, weight the (non-smoothed) density field with the mark

1 + δM (x, t) =
m(δ;R)

m̄

[
1 + δ(x, t)

]



δ(x)

smooth

δR(x)

mark

δM(x)

weight

m[δR(x)]
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[E. Massara ++, 2001.11024]



Marked Correlation Function



The marked correlation function,M, is the 2-point configuration space correlation
of marked fields. It is the sum of pairs of objects separated by a distance r, weighted
by the ratio of the mark function value to the mean mark mi/m̄ at each point and
divided by the number of such pairs n(r):

M(r) =
∑

{i,j}|rij=r

mimj

n(r)m̄2
.

For an analytical treatment it is convenient to rewrite the above equation as

M(r) =
1 +W (r)

1 + ξ(r)

with
1 +W (r) =

1

m̄2
〈
[
1 + δM (x2)

] [
1 + δM (x1)

]
〉

with r = |x2 − x1|, and ξ(r) = 〈δ(x2)δ(x1)〉 the correlation function,

and the mean mark m̄ = 〈m(δR)(1 + δ)〉.



Standard correlation function Marked correlation function
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Analytic description of the marked correlation function:

[AA, K. Koyama, H. Winther, J.L. Cervantes & B.Li (1911.06362)]

Lagrangian Perturbation Theory:

1 +W (r) =

∫
d3q

e−
1
2

(r−q)TA−1(r−q)

(2π)3/2|A|1/2

∫
d3Q

e−
1
2

(R−Q)TC−1(R−Q)

(2π)3/2|C|1/2
[

1︸︷︷︸
ZA

+ I
]
,

with I = I(R,Q, r, q).

The components of the matrices A and C are

Aij(q, t) = 2

∫
d3k

(2π)3

(
1− eik·q

) kikj
k4

PL(k) ,

Cij(q, t) = σ2
Ψδij −

1

4
ALij(q, t),

with the “velocity” variance σ2
Ψ =

1

6π2

∫ ∞
0

dp PL(p)



Biasing δX = bLSδ

• Tracers, as halos, galaxies, quasars,..., are biased objects of the underlying CDM field.
• Large scale bias (bLS) depends mainly on the quantity νc(M) = δc(M)/σ2(M).
• The density threshold for collapse δc(M) becomes mass dependent in MG due to a

violation of Birkhoff’s theorem and δMG
c (M) < δGR

c (M).
• Meanwhile, the variances of perturbations on balls enclosing a mass M have
σ2

MG(M) > σ2
GR(M).

Hence, one typically finds bMG
LS < bGR

LS
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Halo correlation function ξh(r)
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Marking and biasing processes are degenerated:
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This effect of inversion of the trends for the mCFs for tracers and matter can be
interpreted by considering the mean mark, m̄ ≈ b1B1σ

2
R, which shows that for the

unbiased case (b1 = 1) m̄MG
matter < m̄GR

matter, because σMG
R > σGR

R and B1 is negative.
However, if the differences in linear local bias are sufficiently large they yield

m̄MG
tracers > m̄GR

tracers

.



Marked correlation functions are highly linear
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Comparison of models

W16 + 1-loop

This Work
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Marked correlation function for halos
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Marked Power Spectrum





Correlation and Cross-correlation Matrices
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Through a Fisher information matrix analysis, Massara++ (2001.11024) concluded that the
marked power spectrum can put tight constraints on the sum of the neutrino masses:

Power spectrum: σ(Mν) = 0.8 eV

Marked power spectrum: σ(Mν) = 0.017 eV

The marked PS is 47× more constrictive than the “standard” power spectrum!

(Warning: This analyisis was done for CDM in configuration space.)



PT for the marked power spectrum

(2π)2δD(k + k′)M(k) = 〈δM (k)δM (k′)〉

M(k, µ) =
[
C0 − C1WR(k)

][
(ã0 + ã2µ

2)PL(k) + b̃0
]

+ 1-loop
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O. Philcox, AA & E. Massara (arxiv:2010.05914)


