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Cartan invariant integral - extension to gauge field theory

1. CARTAN INVARIANT INTEGRAL - EXTENSION TO GAUGE
FIELD THEORY

“Leçons sur les Invariants Intégraux ”, Librairie Sceintifique A.
Hermann et Fils (1922)

Demand that the integral I over a closed parameterized set
qi (t(s); s), v j(t(s); s), t(s) be independent of t where

I =

∮
ds

(
∂L

∂v i
∂qi

∂s

∣∣∣∣
t(s)

−
(
∂L

∂v i
v i − L

)
dt

ds

)

=:

∮ (
∂L

∂v i
dqi −

(
∂L

∂v i
v i − L

)
dt

)
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Cartan invariant integral - extension to gauge field theory

Free relativistic particle extension

Lp =
1

2N
v2 − N

2
m2

Ip =

∮ (
N−1vµdq

µ − 1

2

(
N−1v2 + Nm2

)
dt

)
Require that this vanish under independent δ variations,
integrating by parts over the closed interval to get

δIp =

∮ [(
−N−2δNvµ + N−1δvµ

)
dqµ +

(
1

2
N−2δNv2 − N−1vµδv

µ

−1

2
δNm2

)
dt −

(
1

2
N−2dNv2 − N−1vµdv

µ − 1

2
dNm2

)
δt

]
= 0
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Cartan invariant integral - extension to gauge field theory

Free relativistic particle extension

Coefficient of δvµ yields vµ = dqµ

dt := q̇µ

Coefficient of δN yields N = m−1
(
−q̇2

)1/2

Coefficient of δt is redundant, yielding −m2Ṅ = N−1q̇ · q̈
Coefficient of δqµ yields the equation of motion d

dt

(
N−1q̇µ

)
= 0
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Cartan invariant integral - extension to gauge field theory

Free relativistic particle extension to phase space

We have a primary constraint π =
∂Lp
∂Ṅ

= 0.
The required invariant integral becomes

Ip =

∮ [
pµdq

µ + πdN −
(
N

2

(
p2 + m2

)
+ πṄ

)
dt

]
resulting in

dIp =

∮ [
δpµ (dqµ − Npµdt)− δqµdpµ + δN

(
−dπ − 1

2
(p2 + m2)dt

)

+δπ
(
dN − Ṅdt

)
+δt

((
1

2
(p2 + m2

)
dN + Npµδpµ + δπṄ + πδṄ

)
+δṄπdt

]
= 0
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Cartan invariant integral - extension to gauge field theory

Free relativistic particle extension to phase space

The first and second terms result in dqµ

dt = Npµ and dpµ

dt = 0. The
third term yields the secondary constraint p2 + m2 = 0, and the
forth Ṅ = dN

dt . The remaining terms are redundant.
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Cartan invariant integral - extension to gauge field theory

Extension to the ADM Lagrangian

Claim: The assumed invariant integral

IADM =

∮
d3x

[
pabdgab + PµdN

µ −HADMdt − PµṄ
µdt
]

where

HADM =
N√

3g

(
pabp

ab − (paa)2 − N
√

3g3R − 2Napba|b

)
with primary constraints Pµ = 0 yields the correct secondary
constraints and the correct Einstein Hamiltonian equations.

These two systems are examples of a general new invariant integral
approach to constrained Hamiltonian dynamcs, equivalent to the
Rosenfeld-Bergmann-Dirac prodedure.
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2. DERIVATION OF DIFFEOMORPHISM GENERATOR
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Derivation of diffeomorphism generator

Derivation of reparameterization generator for the free
particle

Take ds in the Poincaré-Cartan increment to correspond to the
change in solutions that results from an infinitesimal
reparameterization t ′ = t − dsε(t). Represent the change in the
variables as d̄qµ = dsq̇µε and d̄N = ds(ε̇N + εṄ). (These are
actually the Lie derivatives with respect to ε.)

Now use the identity which is the statement that the particle
Lagrangian transforms as a scalar density under
reparameterizations to deduce the existence of a vanishing Noether
charge Cp:

dCp

dt
=

d

dt

(
Nε

2

(
p2 + m2

)
+ π

(
Ṅε+ N ε̇

))
= 0
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Derivation of diffeomorphism generator

Non-projectability of the Noether charge

Must assume variable-dependent reparameterizations
ε(t) = N−1ξ(t) to get Legendre-projectable reparameterizations:

Cp =
ξ

2

(
p2 + m2

)
+ π

(
Ṅε+ N ε̇

)
=
ξ

2

(
p2 + m2

)
+ π

(
ṄN−1ξ − NN−2Ṅξ + ξ̇

)
=
ξ

2

(
p2 + m2

)
+ πξ̇

This is the phase space generator of the N-dependent
reparameterizations.
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Derivation of diffeomorphism generator

New derivation of Pons-Salisbury-Shepley generator

Claim: The analogous substitution into the ADM vanishing
Noether charge yields the Pons-Salisbury-Shepley generator CPSS
[Pons et al. , 1997] of diffeomorphism-induced general coordinate
transformations εµ(x) =

(
N−1ξ0(x),−N−1Naξ0(x) + ξa(x)

)
:

CPSS = Pµξ̇
µ +Hµξµ + P0(ξ0 − Naξ0

,a + N,aξ
a)

+Pa(N,be
abξ0

,b − Nξ0
,be

ab + N,aξ
a + Na

,bξ
b − Nbξa,b)
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3. INTRINSIC COORDINATES AND DIFFEOMORPHISM
INVARIANTS
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Intrinsic coordinates and diffeomophism invariants

Free particle evolution in proper time

Choose as the particle time evolution variable T = −mq0/p0. This
is the proper time. Perform the canonical transformation in the
Poincaré-Cartan increment

p0dq
0 = PdT +

∂G

∂q0
dq0 +

∂G

∂T
dT

The required generator is

G = − m

2T

(
q0
)2 −mT + mT ln(T )

with the resulting canonical conjugate

P = −m ln

(
−mq0

p0

)
− p2

0

2m
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Intrinsic coordinates and diffeomophism invariants

General covariance and gauge choices

System is still reparameterization covariant - with new generator

Cp = ξ

[
−P −m ln(T ) +

1

2

(
papa + m2

)]
+ πξ̇

Now make the proper time gauge choice by setting the evolution
parameter equal to the intrinsic variable T , t = T .

Given particle solutions in any parameterization the gauge
generator can be employed to transform to solutions satisfying the
gauge condition. The remaining canonical variables are invariants
under reparameterizations
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Intrinsic coordinates and diffeomophism invariants

Intrinsic spacetime coordinate variables

Choose appropriate spacetime scalars Xµ
(
gab, p

cd
)
, constructed

with the use of Weyl scalars, as intrinsic spacetime coordinates.

Perform canonical transformations in the Poincaré-Cartan
increment so that the non-vanishing contribution becomes

dIADM =

∫
d3x pabdgab

=

∫
d3x

(
πµdX

µ + pAdgA +
δG

δgab
dgab +

δG

δαA
dαA +

δG

δXµ
dXµ

)
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Intrinsic coordinates and diffeomophism invariants

Intrinsic spacetime coordinate gauge choice

Now make the gauge choices xµ = Xµ
(
gab, p

cd
)
.

The diffeomorphism generator CPSS could be employed to
explicitly display the corresponding diffeomorphism invariants, as
shown in [Pons et al. , 2009]
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Quantum outlook

4. QUANTUM OUTLOOK
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Quantum outlook

Quantum outlook

Claim: It is likely that every gravitational quantization procedure
now undertaken either explicitly or implicitly invokes a choice of
intrinsic coordinates

A scheme must be sought that takes into account the abundance
of physically distinct gauge choices
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Quantum outlook
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