

MULTI-WAVELENGTH STUDY OF HIGH-REDSHIFT BLAZARS

G. HARUTYUNYAN D. ISRAYELYAN

SIXTEENTH MARCEL GROSSMANN MEETING

ICRANet-Armenia

INTRODUCTION

- In the unification scheme of radio-loud active galactic nuclei (AGNs) blazars are a subclass with a relativistic jet making a small angle with the observer's line of sight.
- Blazars are characterized with high polarization, short and strong variations both in time and amplitude
- Blazars are grouped into two large classes: FSRQs and BL Lacs, based on the absence or presence of emission lines in their optical spectra.

Why z > 2.5?

- Cosmological evolution of blazars and supermassive black holes
- Evolution of relativistic jets across different cosmic epochs
- Limit on the density Extragalactic Background Light
- For studying accretion disc-jet connection
- To investigate environments around supermassive black holes

30

Fermi-LAT Analysis

- Accumulated data 2008-08-04 2018-08-04
- Filtered with gtselect and gtmktime
- Binned with gtbin
- Model was generated using 4FGL-DR2
- Maximum-likelihood was implemented with gtlike

Swift Analysis

- All available observations during 15 years
- Swift XRT
 - Source region is a circle with 20 pixel radius 0
 - Background is an annulus region with 51 and 85 0 pixels inner and outer radii
 - Fitting was performed with the XPSEC tool. 0
- Swift UVOT
 - Source region is a circle with 5" radius 0
 - **Background is a circle with 20" radius** 0
 - **Uvotsource was used for conversion source counts** 0 and after were corrected with reddening coefficients E(B – V) for extinction.

• PKS 0537-286 PKS 0347-211 83 1343+451

48.5

 831343 ± 451 Ó

Analysis Results

γ-ray									
Photon index	1.71 - 3.05								
Flux	$4.84 \times 10^{-10} - 1.5 \times 10^{-7}$ photon cm ⁻² s ⁻¹								
Luminosity	$\begin{array}{c} 1.01 \times 10^{47} - 5.54 \times 10^{48} \\ erg \ s^{-1} \end{array}$								
X-ray									
Photon index	1.01 – 2.33								
Flux	$5 \times 10^{-14} - 10^{-11}$ erg cm ⁻² s ⁻¹								
BL Lacs -									
FSRQs -									
BCUs -									

-7.0

N. Sahakyan et al, 2020

Adaptively binned light curves

- 1. B3 1343+451
 - quiescent state the γ -ray flux is $\simeq (1 1)^{-1}$ 5) $\times 10^{-8}$ photon cm⁻²s⁻¹
 - on MJD 55891.7 was observed the highest γ -ray flux which is (8.77 \pm 2.16) $\times 10^{-7}$ photon cm⁻²s⁻¹
 - the average luminosity is $(2-4) \times$ $10^{48} erg s^{-1}$
- 2. PKS 0537-280
 - The average γ –ray flux is (4.38 \pm 0.18) $\times 10^{-8}$ photon cm⁻²s⁻¹
 - on MJD 57879.2 was observed the highest γ -ray flux which is (6.58 \pm 1.35) $\times 10^{-7}$ photon cm⁻²s⁻¹
- 3. PKS 0347-211
 - on MJD 54757.04 \pm 2.71 the γ -ray flux was $(1.57 \pm 0.41) \times$ 10^{-7} photon cm⁻²s⁻¹
- 4. PKS 0451-28
 - on MJD 56968.60 ± 0.79 the peak γ -ray flux $(2.20 \pm 0.5) \times$ 10^{-7} photon cm⁻²s⁻¹

Other y-ray LightCurves

For these sources flux variabilities were

week-month scales

The most distant flaring blazar MG3 is J163554+3629 (z = 3.65). The averaged peak value of γ -ray flux was (6.4 ± 1.15) × 10^{-7} photon $cm^{-2}s^{-1}$.

y-ray photon

index variability

- The hardest photon index of B3 1343 + 451was observed on MJD 58089.16 \pm 1.5 with $\Gamma_{\gamma} = 1.73 \pm 0.24$.
- In the 30-d binned light curve of **PKS 0451** -**28** are observed periods when $\Gamma_{\gamma} = 2.06 \pm$ 0.07 and $\Gamma_{\gamma}=2.17\pm0.15$ on MJD 56977.66 and 58297.66, respectively.
- γ-ray spectrum of **B3 0908** + • The **416***B* averaged over 10 year was $2.42 \pm$ 0.05 meanwhile on MJD 57517.66 the photon index changed to 1.84 ± 0.25 .
- The 7-day binned light curve of TXS 0907 + **230** shows that there are three periods when y-ray emission appears with an unusually its γ-ray spectrum with $\Gamma_{\gamma}=1.72~\pm$ hard 0.23, 1.90 \pm 0.21 and 1.72 \pm 0.15.

Have been used one-zone leptonic model

The emission region is assumed to be a spherical blob of radius of R

The emitting region is filled with a uniformly tangled magnetic field B

The emission region contains homogeneous population of relativistic electrons

SED of Bright Sources

v [Hz]

N. Sahakyan et al, 2020

SED of Other Sources

N. Sahakyan et al, 2020

Table of results

Sources	δ	α	Ymin	Ycut	В	R	Ue	$U_{\rm B}$	$L_{\rm d}$	$L_{\rm c}$	LB
[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]	[12]
GB 1508+5714	15.72 ± 1.29	1.17 ± 0.07	26.90 ± 2.88	1.30 ± 0.10	0.19 ± 0.02	2.28	0.50	1.49	3.02	2.43	0.73
PKS 1351-018	20.47 ± 2.49	2.16 ± 0.11	2.68 ± 0.36	4.99 ± 0.71	0.20 ± 0.02	2.29	0.54	1.66	4.04	2.68	0.82
PKS 0537-286	11.50 ± 0.57	1.33 ± 0.07	15.70 ± 1.49	2.45 ± 0.16	0.28 ± 0.02	1.14	5.93	3.21	3.44	7.31	0.40
TXS 0800+618	14.04 ± 0.56	2.75 ± 0.04	13.98 ± 0.86	2.20 ± 0.02	0.26 ± 0.01	15.5	0.06	2.73	1.65	13.49	61.84
S4 1427+543	10.00 ± 0.37	2.04 ± 0.10	29.00 ± 2.55	2.79 ± 0.27	0.53 ± 0.04	1.90	0.63	10.02	1.83	2.14	3.75
GB6 J0733+0456	16.28 ± 1.36	2.80 ± 0.04	47.90 ± 3.42	15.73 ± 1.60	0.16 ± 0.03	2.98	0.12	6.22	3.40	0.98	5.20
PKS 0347-211	26.00 ± 1.02	2.79 ± 0.02	23.09 ± 1.12	2.62 ± 0.16	0.20 ± 0.01	8.15	0.03	1.61	1.99	1.72	10.08
B2 0743+25	10.02 ± 0.45	1.13 ± 0.19	7.66 ± 0.22	2.03 ± 0.08	0.36 ± 0.01	0.70	16.90	0.003	3.58	7.80	0.24
S4 1124+57	22.17 ± 1.37	2.78 ± 0.04	22.92 ± 1.45	1.28 ± 0.10	0.22 ± 0.01	5.15	0.14	1.95	1.69	3.39	4.87
PKS 0438-43	18.17 ± 1.29	2.78 ± 0.04	23.13 ± 1.54	7.19 ± 0.58	0.34 ± 0.02	5.42	0.12	4.52	3.91	3.33	12.52
S4 2015+65	17.85 ± 1.32	2.73 ± 0.05	20.63 ± 1.64	2.75 ± 0.29	0.46 ± 0.03	13.50	0.07	8.41	4.55	1.26	14.44
MG2 J174803+3403	24.50 ± 2.06	2.87 ± 0.06	14.67 ± 1.58	1.40 ± 0.49	1.45 ± 0.09	7.41	0.004	83.98	8.87	0.23	434.69
PKS 0834-20	27.42 ± 0.97	2.70 ± 0.06	20.57 ± 1.51	2.13 ± 0.18	0.37 ± 0.02	6.83	0.02	5.44	5.51	0.70	23.92
TXS 0222+185	10.03 ± 0.28	1.62 ± 0.05	19.56 ± 0.98	2.38 ± 0.10	0.35 ± 0.02	1.07	10.28	5.04	2.71	11.10	0.54
OD 166	19.02 ± 0.84	1.96 ± 0.04	2.58 ± 0.15	1.01 ± 0.03	1.15 ± 0.05	4.32	0.01	0.52	0.53	0.25	92.38
TXS 0907+230	21.66 ± 1.66	2.23 ± 0.11	20.26 ± 1.84	1.44 ± 0.10	0.31 ± 0.02	5.23	0.03	3.72	1.09	0.70	5.96
PMN J1441-1523	17.01 ± 1.50	2.19 ± 0.07	2.86 ± 0.29	3.31 ± 0.46	1.68 ± 0.14	1.47	0.07	112.38	0.17	0.14	22.85
TXS 1448+093	17.90 ± 1.13	1.52 ± 0.15	49.64 ± 5.82	0.84 ± 0.06	0.70 ± 0.05	7.96	0.003	19.44	0.56	0.17	115.93
PMN J0226+0937	25.02 ± 1.98	2.41 ± 0.04	5.37 ± 0.59	8.32 ± 0.62	1.74 ± 0.12	3.09	0.03	119.86	10.94	0.03	107.98
PKS 0451-28	26.14 ± 1.27	2.90 ± 0.28	21.93 ± 1.3	2.19 ± 0.01	0.45 ± 0.03	5.90	0.11	8.01	7.20	3.59	26.32
B3 0908+416B	23.22 ± 1.72	1.31 ± 0.25	6.41 ± 0.72	1.11 ± 0.10	0.39 ± 0.03	1.76	0.09	6.10	0.43	0.26	1.78
TXS 1616+517	10.11 ± 0.31	2.09 ± 0.09	93.28 ± 4.15	4.34 ± 0.36	0.52 ± 0.02	3.59	0.06	10.79	0.35	0.70	13.11
B3 1343+451	26.55 ± 1.04	2.48 ± 0.04	16.49 ± 1.31	8.67 ± 0.48	0.10 ± 0.01	4.16	0.11	0.42	0.48	1.76	0.68
PKS 2107-105	27.32 ± 1.34	2.30 ± 0.06	7.45 ± 0.90	3.63 ± 0.39	0.67 ± 0.05	9.48	0.0006	17.73	8.30	0.05	150.16

Summary

- Except for the two BL Lacs, the y-ray photon index of all the considered high redshift blazars ranges from 2.18 to 3.05.
- The Swift XRT observations show a significant X-ray emission only from the FSRQs considered here The X-ray flux is spanning from $5 \times 10^{-14} erg \ cm^{-2}s^{-1}$ to $10^{-11} erg \ cm^{-2}s^{-1}$.
- The y-ray variability of the considered sources has shown emission on short and long time scales: from sub-day to month scales.
- The SEDs were modeled within a one-zone Lepontic scenario, considering the IC scattering of both synchrotron and IR photons from the dusty torus.
- The radius of the emitting region is estimated to be $\leq 0.05 \, pc$ while the magnetic field and the **Doppler factor are correspondingly within** 0.10–1.74 *G* and 10.00–27.42. The black hole masses are estimated to be within $(1.69 - 5.35) \times 10^9 M_{\odot}$.
- The jet luminosity is estimated to be $\leq 1.41 \times 10^{46} erg s^{-1}$. The jet luminosity is lower than that of the disc $L_D \simeq (1.09 - 10.94) \times 10^{46} erg s^{-1}$.

THANK YOU!!

