Borexino detector performances

Alessio Caminata - INFN Genova On behalf of the Borexino Collaboration

16th Marcel-Grossman Meeting - July 5th – 10th 2021

The Borexino experiment

- Main goal: the detection of low energy solar neutrinos, in particular ⁷Be neutrinos
- Detection method: elastic scattering of neutrinos on electrons: $\nu_x + e \rightarrow \nu_x + e$ $x = e, \mu, \tau$
- Location: LNGS (Laboratori Nazionali del Gran Sasso), Italy
- Detection medium: large mass of organic liquid scintillator

 σ_{ve} is small: the expected rate of ⁷Be solar neutrinos in 100 tons of Borexino scintillator is about 50 counts/day which corresponds to 10⁻⁹ Bq/kg

Just for comparison, natural water is about 1 Bq/kg in ²³⁸U, ²³²Th, and ⁴⁰K **huge effort to achieve extremely high radiopurity levels**

How to build a rare event search experiment

Laboratori Nazionali del Gran Sasso (Italy)

Source A. Ianni, Journal of Physics: Conference Series 1342 (2020) 012003

- The LNGS altitude is 963 m and the average rock cover is about 1400 m
- The shielding capacity against cosmic rays is about 3800 m.w.e.
- The muon flux is reduced by a factor 10^6 with respect to the surface: $\Phi(\mu) \sim 1 \mu/m^2/h$

The Borexino detector

Key elements

- Scintillator: 280 ton of PC+PPO in a 125 μm thick nylon vessel, fiducial mass ~ 100 ton;
- Non scintillating Buffer:
 900 t of quenched scintillator
- Nylon Vessels: 4.25 m and 5.5 m radius
- 2212 Internal PMTs
- Stainless Steel Sphere holding PMTs
- 208 Muon PMts
- Water Tank:
 2.8 kton of pure H₂O, γ and n shield, μ water Čerenkov detector

The Borexino detector

Radiopurity of the materials

	Background	Concentration/Flux		Strategy	Result	
Type	Source	Typical amount	Requirement		Phase-I	Phase-II
μ	cosmic	$\sim 200 {\rm s}^{-1} {\rm m}^{-2}$	$< 10^{-10} s^{-1} m^{-2}$	underground, WT	$< 10^{-10} \text{ (eff.} > 0.9992)$	$< 10^{-10} \text{ (eff.} > 0.9992)$
γ	rock	—		WT, FV	negligible	negligible
γ	PMTs, SSS	—		buffer, FV	negligible	negligible
^{14}C	intrinsic PC	$\sim 10^{-12}{ m g/g}$	$< 10^{-18}{ m g/g}$	PC selection	$\sim 2\cdot 10^{-18}\mathrm{g/g}$	$\sim 2\cdot 10^{-18}\mathrm{g/g}$
^{238}U	dust, metals	$\sim 10^{-5}{ m g/g}$	$< 10^{-16}{ m g/g}$	purifications, tagging	$1.6{\pm}0.1\;10^{-17}{ m g/g}$	$< 9.5 \cdot 10^{-20}{ m g/g}$
^{232}Th	dust, metals	$\sim 10^{-6}{ m g/g}$	$< 10^{-16}g/g$	purifications, tagging	$5{\pm}1~10^{-18}{ m g/g}$	$< 7.2 \cdot 10^{-19}{ m g/g}$
7Be	cosmogenic	$\sim 3\cdot 10^{-2}{ m Bq/ton}$	$< 10^{-6}\mathrm{Bq/ton}$	distillation	not seen	not seen
^{40}K	dust, PPO	$\sim 2\cdot 10^{-6}{ m g/g(dust)}$	$< 10^{-18}{ m g/g}$	distillation	not seen	not seen
^{210}Po	^{222}Rn	—	<1 cpd/ton	purifications, tagging	$\sim 1 \text{ cpd/ton}$	< 1 cpd/ton
^{222}Rn	material emanation	10-1000 Bq/kg (rock)	<10 cpd/100 ton	$< 1 \mathrm{cpd} / 100 \mathrm{ton}$	$< 1 \mathrm{cpd} / 100 \mathrm{ton}$	< 0.1 cpd/100 ton
^{39}Ar	air, cosmogenic	$17\mathrm{mBq/m^3}$ (air)	<1 cpd/100 ton	$N_2 stripping$	\ll^{85} Kr	$\ll^{85} \mathrm{Kr}$
^{85}Kr	air, nuclear reactions	$\sim 1{ m Bq/m^3}~{ m (air)}$	<1 cpd/100 ton	$N_2 stripping$	$30{\pm}5~{ m cpd}/100~{ m ton}$	< 5 cpd/100 ton
^{210}Bi	^{222}Rn			water extraction	40 cpd/100 ton	$\sim 20~{\rm cpd}/100$ ton

The scintillation light

Scintillation light detected by 2212 PMTs **Information from detected light**:

- Particle identification -> light vs time
- Energy of the event -> total light collected
- Event position -> time of flight algorithms

Scintillation light is isotropic

• No directionality

Performances

- σ(E) ~ 50 keV @ 1 MeV
- σ(r) ~ 10 cm @ 1 MeV

The scintillation light

Scintillation light detected by 2212 PMTs Information from detected light:

- Particle identification -> light vs time •
- Energy of the event -> total light collected
- Event position -> time of flight algorithms

Scintillation light is isotropic

No directionality

Performances

- $\sigma(r) \sim 10 \text{ cm} @ 1 \text{ MeV}$

Source: NIM A 600 (2009)

	i=	1	2	3	4
τ_i [ns]	β	3.2	25	73.4	500
Wi	β	0.86	0.05	0.06	0.02
τ_i [ns]	α	3.2	13.5	63.9	480
Wi	α	0.58	0.18	0.14	0.09

Source: PHYSICAL REVIEW D 89, 112007 (2014)

The scintillation light

Scintillation light detected by 2212 PMTs **Information from detected light**:

- Particle identification -> light vs time
- Energy of the event -> total light collected
- Event position -> time of flight algorithms

Scintillation light is isotropic

• No directionality

Performances

- σ(E) ~ 50 keV @ 1 MeV
- σ(r) ~ 10 cm @ 1 MeV

Calibration campaign

- Extensive detector calibration campaigns from 2008 to 2010
- Source deployment systems in scintillator and in SSS
- Different sources investigate different aspects of the detector's response

Alessio Caminata (Borexino Collaboration)

Borexino detector performances

Calibration campaign

• Position of the source measured by looking with cameras at the LED attached to the source

Source	Туре	E [MeV]	Position	Motivations	Campaign
⁵⁷ Co	γ	0.122	in IV volume	Energy scale	IV
¹³⁹ Ce	γ	0.165	in IV volume	Energy scale	IV
²⁰³ Hg	γ	0.279	in IV volume	Energy scale	III
⁸⁵ Sr	γ	0.514	z-axis + sphere R=3 m	Energy scale + FV	III,IV
⁵⁴ Mn	γ	0.834	along z-axis	Energy scale	III
⁶⁵ Zn	γ	1.115	along z-axis	Energy scale	III
⁶⁰ Co	γ	1.173, 1.332	along z-axis	Energy scale	III
⁴⁰ K	γ	1.460	along z-axis	Energy scale	III
222 Rn+ 14 C	β,γ	0-3.20	in IV volume	FV+uniformity	I-IV
	α	5.5, 6.0, 7.4	in IV volume	FV+uniformity	
²⁴¹ Am ⁹ Be	n	0-9	sphere R=4 m	Energy scale + FV	II-IV
394 nm laser	light	-	center	PMT equalization	IV

Borexino detector performances

Energy reconstruction

• Energy of the event calculated from the number of hits on PMTs, number of hit PMTs or photoelectrons on PMTs

Energy [MeV]

Position reconstruction

- Position calculated using time of flight information •
- Time of arrival of the first hit corrected by hit multiplicity •
- Position of the event obtained minimizing a likelihood • function

Position reconstruction bias

- Comparison between known source position (detected by cameras) and reconstructed position
- Bias in z considered during systematic studies
- Impact on the fiducial volume determination <0.2%

Sources: JINST 7 P10018 (2012), PHYSICAL REVIEW D 89, 112007 (2014)

Vessel shape reconstruction

- Due to a small leak in the vessel, the vessel shape evolves with time
- Reconstructed selecting events in Npe=(290-350)pe [800-900]keV (mostly ²¹⁰Bi, ⁴⁰K, ²⁰⁸Tl) on the vessel
- Precision of the method: ± 1% (± 5 cm)
- Vessel shape updated every 3 weeks

Trigger efficiency

- Borexino is a self triggering experiment
- A trigger is fired when a minimum of K of inner detector PMTs detect at least a pe in 99 ns.
- K chosen to have a threshold of 50-60 keV
- Trigger efficiency measured with a dedicated laser runs of variable laser intensity
- Trigger efficiency crosschecked with ⁸⁵Sr source, compatible with 100% efficiency

Source: PHYSICAL REVIEW D 89, 112007 (2014)

- Code based on Geant4 and custom C++ simulation
- Performances validated with data from calibration campaign
- Performances:
 - Energy response in agreement within 1% in the solar analysis fiducial volume (²¹⁰Po events)
 - Discrepancy lower than 2% in the whole scintillator (studied with 2.2 MeV gammas from neutron capture on hydrogen)
 - Data from external calibration campaign well reproduced (ad hoc methods implemented, fundamental for modelling of external background)
 - No bias in position reconstruction

Source: Astroparticle Physics 97 (2018) 136-159

- Code based on Geant4 and custom C++ simulation
- Performances validated with data from calibration campaign
- Performances:
 - Energy response in agreement within 1% in the solar analysis fiducial volume (²¹⁰Po events)
 - Discrepancy lower than 2% in the whole scintillator (studied with 2.2 MeV gammas from neutron capture on hydrogen)
 - Data from external calibration campaign well reproduced (ad hoc methods implemented, fundamental for modelling of external background)
 - No bias in position reconstruction

- Code based on Geant4 and custom C++ simulation
- Performances validated with data from calibration campaign
- Performances:
 - Energy response in agreement within 1% in the solar analysis fiducial volume (²¹⁰Po events)
 - Discrepancy lower than 2% in the whole scintillator (studied with 2.2 MeV gammas from neutron capture on hydrogen)
 - Data from external calibration campaign well reproduced (ad hoc methods implemented, fundamental for modelling of external background)
 - No bias in position reconstruction

- Code based on Geant4 and custom C++ simulation
- Performances validated with data from calibration campaign
- Performances:
 - Energy response in agreement within 1% in the solar analysis fiducial volume (²¹⁰Po events)
 - Discrepancy lower than 2% in the whole scintillator (studied with 2.2 MeV gammas from neutron capture on hydrogen)
 - Data from external calibration campaign well reproduced (ad hoc methods implemented, fundamental for modelling of external background)
 - No bias in position reconstruction

- Code based on Geant4 and custom C++ simulation
- Performances validated with data from calibration campaign
- Performances:
 - Energy response in agreement within 1% in the solar analysis fiducial volume (²¹⁰Po events)
 - Discrepancy lower than 2% in the whole scintillator (studied with 2.2 MeV gammas from neutron capture on hydrogen)
 - Data from external calibration campaign well reproduced (ad hoc methods implemented, fundamental for modelling of external background)
 - No bias in position reconstruction

Analytical modeling of detector's response

- In parallel to the Monte Carlo modeling we developed an analytical response function • for determining energy PDF _ $\frac{\text{Par}}{Y_0^{pe}}$
- Effects taken into account: •
 - Scintillation light Ο
 - Cherenkov photons Ο
 - Non uniformity of light collection Ο

$$\iota = \frac{\bar{N}_{pe}(E)}{N_{tot}},$$

$$\bar{N}_{pe}(E) = Y_0^{pe} \cdot [Q(E) \cdot E + f_{Ch} \cdot F_{Ch}(E)]$$

$$\bar{N}_p(E) = N_{\text{tot}}[1 - e^{-\mu}(1 + p_t\mu)](1 - g_C\mu)$$

$$\sigma_p^2 = f_{eq}[1 - (1 + v_1)p_1]\bar{N}_p(E) + v_T^0\bar{N}_p^3(E)$$

$$+ v_T^q \left(\mu \frac{p_0}{p_1}\right)^2 \bar{N}_p^2(E) + v_N \bar{N}_p(E) + \sigma_d^2$$

Parameter	Fix./Free	Meaning/Approach to fixing	Value
Y_0^{pe}	Free	Photoelectron yield [p.e./MeV] for events in the detector center and with $N_{\text{rot.}} = 2000 \text{ PMTs}$	551 ± 1
g_C	Fixed	Fit $N_p^{2d_{1(2)}}$ vs true N_{pe} of MC with Eq. (11) using MC mono-energetic electron samples at 4 energies, simulated along the whole data-set.	0.101
p_t	Fixed	Fraction of a single photoelectron charge spectrum below the electronics threshold; fixed from the earlier calibration measurements and calculations.	0.12
f_{Ch}	Fixed	Relative weight of the scintillation and Cherenkov light; fixed by performing many analytical fits on data with it as a free/fixed parameter.	1.0
$F_{Ch}(E)$	Fixed	$\begin{split} F_{Ch}(E) &= (C_0 + C_1 \cdot x + C_2 \cdot x^2 + C_3 \cdot x^3)(1 + C_4 \cdot E) \\ x &= \ln{(1 + E/E_0)}; \\ E_0 &= 0.165 \text{ MeV} \end{split}$	$\begin{array}{l} C_0 = 1.415; \\ C_1 = -3.397; \\ C_2 = 1.107; \\ C_3 = 0.072; \\ C_4 = 1.337 \end{array}$
Q(E)	Fixed	Quenching term summarizing the effects related to nonlinearity of the scintillator response according to Birk's quenching model [18]: $Q(E, k_B) = \frac{1}{E} \int_0^E \frac{dE'}{1+k_B dE'/dx}$, where k_B is the Birk's constant, and Q(E) can be parametrized as: $Q(E, k_B) = \frac{A_1 + A_2 \ln E + A_3 \ln E^2}{1+A_4 \ln E + A_3 \ln E^2}$, fixed from the fit of N_{pe} vs <i>E</i> with MC simulation of γ calibration data.	
v_1	Fixed	Relative variance of the probability that a PMT triggers for events uniformly distributed in the detector volume, calculated using dedicated MC studies. It has some energy dependence and then we are using a value averaged over the LER.	0.16
v_T^0	Free	Spatial nonuniformity of the number of triggered PMTs.	0.50 ± 0.37
v_N	Free	Scintillator intrinsic resolution parameter for β s (caused by δ -electrons) that also effectively takes into account other contributions at low energies.	11.5 ± 1.0
v_T^q	Fixed	Nonuniformity of the light collection, calculated from MC events uniformly distributed in FV.	7.0
v_T^{α}	Free	Spatial nonuniformity resolution, corresponding to the width of 210 Po- α peak.	4.73 ± 0.21
σ_d	Fixed	PMT dark noise contribution	$0.23 N_p^{dt_1}, 0.4 N_p^{dt_2}$

Source: Physical Review D 100, 082004 (2019)

Conclusions

- Borexino is a liquid scintillator detector tailored for the solar neutrino detection currently in phase of data taking at LNGS
- Performances:
 - Triggering efficiency
 - $\circ ~~\sigma(E) \sim 50 \; keV @ \; 1 \; MeV$
 - $\circ ~~\sigma(r) \sim 10~cm @~1~MeV$
- Energy response model in agreement within 1% with data
- These performances allow Borexino to deliver important results in neutrino and solar physics as shown in the next talks

Alessio Caminata (Borexino Collaboration) Borexino detector performances

26